Abstract
Polaritons are quasiparticles that form in semiconductors when an elementary excitation such as an exciton or a phonon interacts sufficiently strongly with light. In particular, exciton–polaritons have attracted tremendous attention for their unique properties, spanning from an ability to undergo ultra-efficient four-wave mixing to superfluidity in the condensed state. These quasiparticles possess strong intrinsic nonlinearities, while keeping most characteristics of the underlying photons. Here we review the most important features of exciton–polaritons in microcavities, with a particular emphasis on the emerging technological applications, the use of new materials for room-temperature operation, and the possibility of exploiting polaritons for quantum computation and simulation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ultrafast imaging of polariton propagation and interactions
Nature Communications Open Access 30 June 2023
-
Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters
Nature Communications Open Access 08 May 2023
-
Exciton polariton interactions in Van der Waals superlattices at room temperature
Nature Communications Open Access 17 March 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Hopfield, J. J. & Thomas, D. G. Polariton absorption lines. Phys. Rev. Lett. 15, 22–25 (1965).
Morris, G. C. & Sceats, M. G. The 4000 Å transition of crystal anthracene. Chem. Phys. 3, 164–179 (1974).
Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).
Nitsche, W. H. et al. Algebraic order and the Berezinskii–Kosterlitz–Thouless transition in an exciton–polariton gas. Phys. Rev. B 90, 205430 (2014).
Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).
Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).
Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).
Lagoudakis, K. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).
Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).
Bellessa, J. et al. Giant Rabi splitting between localized mixed plasmon–exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor. Phys. Rev. B 80, 033303 (2009).
Lerario, G. et al. Room temperature Bloch surface wave polaritons. Opt. Lett. 39, 2068–2071 (2014).
Symonds, C., Lemaitre, A., Homeyer, E., Plenet, J. C. & Bellessa, J. Emission of Tamm plasmon/exciton polaritons. Appl. Phys. Lett. 95, 151114 (2009).
Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nature Phys. 10, 803–813 (2014).
Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
Keeling, J., Marchetti, F. M., Szymanska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2007).
Vladimirova, M. et al. Polariton–polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).
Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nature Phys. 10, 500–504 (2014).
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).
Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).
Steger, M. et al. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B 88, 235314 (2013).
Vishnevsky, D. V. & Laussy, F. Effective attractive polariton–polariton interaction mediated by an exciton reservoir. Phys. Rev. B 90, 035413 (2014).
Dominici, L. et al. Backjet, shock waves and ring solitons in the quantum pond of a polariton superfluid. Nature Commun. 6, 8993 (2015).
Baas, A., Karr, J.-P., Romanelli, M., Bramati, A. & Giacobino, E. Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator. Phys. Rev. B 70, 161307 (2004).
Paraïso, T. K., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nature Mater. 9, 655–660 (2010).
Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photon. 6, 50–55 (2011).
Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).
Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nature Mater. 13, 271–278 (2014).
Christopoulos, S. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).
Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).
Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011).
Das, A. et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107, 066405 (2011).
Orosz, L. et al. LO-phonon-assisted polariton lasing in a ZnO-based microcavity. Phys. Rev. B 85, 121201 (2012).
Litinskaya, M., Reineker, P. & Agranovich, V. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).
Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: photoluminescence. Phys. Rev. B 80, 235314 (2009).
Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).
Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316–3319 (1999).
Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004).
Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).
Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).
Rossbach, G. et al. Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Phys. Rev. B 88, 165312 (2013).
Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008).
Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).
Gambino, S. et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photon. 1, 1042–1048 (2014).
Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).
Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).
De Liberato, S. Light–matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).
Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).
Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).
Brehier, A., Parashkov, R., Lauret, J. S. & Deleporte, E. Strong exciton–photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006).
Nguyen, H. S. et al. Quantum confinement of zero-dimensional hybrid organic–inorganic polaritons at room temperature. Appl. Phys. Lett. 104, 081103 (2014).
Agranovich, V. M., Basko, D. M., Rocca, G. C. L. & Bassani, F. Excitons and optical nonlinearities in hybrid organic–inorganic nanostructures. J. Phys. Condens. Matter 10, 9369–9400 (1998).
Holmes, R. J., Kéna-Cohen, S., Menon, V. M. & Forrest, S. R. Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity. Phys. Rev. B 74, 235211 (2006).
Wenus, J. et al. Hybrid organic–inorganic exciton–polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 235212 (2006).
Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).
Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Commun. 6, 8579 (2015).
Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).
Azzini, S. et al. Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99, 111106 (2011).
Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).
Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Exp. 20, 5530–5537 (2012).
Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).
Schmutzler, J. et al. Determination of operating parameters for a GaAs-based polariton laser. Appl. Phys. Lett. 102, 081115 (2013).
Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).
Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).
Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).
Butté, R. et al. Phase diagram of a polariton laser from cryogenic to room temperature. Phys. Rev. B 80, 233301 (2009).
Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Exp. 17, 15975–15982 (2009).
Malpuech, G., Kavokin, A., Di Carlo, A. & Baumberg, J. J. Polariton lasing by exciton–electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002).
Perrin, M., Senellart, P., Lemaître, A. & Bloch, J. Polariton relaxation in semiconductor microcavities: efficiency of electron–polariton scattering. Phys. Rev. B 72, 075340 (2005).
Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).
Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008).
Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).
Yang, G., MacDougal, M. & Dapkus, P. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).
Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).
Onishi, T. et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48, 1107–1112 (2012).
Baten, M. Z. et al. GaAs-based high temperature electrically pumped polariton laser. Appl. Phys. Lett. 104, 231119 (2014).
Ballarini, D. et al. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater. 2, 1076–1081 (2014).
Miller, D. A. B. Are optical transistors the logical next step? Nature Photon. 4, 3–5 (2010).
Liew, T., Kavokin, A. & Shelykh, I. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).
Shelykh, I. A., Johne, R., Solnyshkov, D. D. & Malpuech, G. Optically and electrically controlled polariton spin transistor. Phys. Rev. B 82, 153303 (2010).
Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).
Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).
Ballarini, D. et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).
De Giorgi, M. et al. Control and ultrafast dynamics of a two-fluid polariton switch. Phys. Rev. Lett. 109, 266407 (2012).
De Giorgi, M. et al. Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112, 113602 (2014).
Marsault, F. et al. Realization of an all optical exciton–polariton router. Appl. Phys. Lett. 107, 201115 (2015).
Nguyen, H. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).
Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nature Commun. 5, 3278 (2014).
Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).
Antón, C. et al. Quantum reflections and shunting of polariton condensate wave trains: implementation of a logic AND gate. Phys. Rev. B 88, 245307 (2013).
Solnyshkov, D. D., Bleu, O. & Malpuech, G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices Microstruct. 83, 466–475 (2015).
Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013).
Dietrich, C. P. et al. Parametric relaxation in whispering gallery mode exciton–polariton condensates. Phys. Rev. B 91, 041202 (2015).
Nguyen, H. S. et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett. 114, 036402 (2015).
Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton–polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).
Liew, T. C. H. & Savona, V. Multipartite polariton entanglement in semiconductor microcavities. Phys. Rev. A 84, 032301 (2011).
Pagel, D., Fehske, H., Sperling, J. & Vogel, W. Strongly entangled light from planar microcavities. Phys. Rev. A 86, 052313 (2012).
Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005).
Ardizzone, V. et al. Bunching visibility of optical parametric emission in a semiconductor microcavity. Phys. Rev. B 86, 041301 (2012).
Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nature Commun. 5, 3260 (2014).
Demirchyan, S. S., Chestnov, I. Y., Alodjants, A. P., Glazov, M. M. & Kavokin, A. V. Qubits based on polariton Rabi oscillators. Phys. Rev. Lett. 112, 196403 (2014).
Quochi, F. et al. Strongly driven semiconductor microcavities: from the polariton doublet to an ac Stark triplet. Phys. Rev. Lett. 80, 4733–4736 (1998).
O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
López Carreño, J. C., Sánchez Muñoz, C., Sanvitto, D., del Valle, E. & Laussy, F. P. Exciting polaritons with quantum light. Phys. Rev. Lett. 115, 196402 (2015).
Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & Valle, E. d. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).
Silva, B. et al. Measuring photon correlations simultaneously in time and frequency. Preprint at http://arXiv.org/abs/1406.0964 (2015).
Kasprzak, J. et al. Second-order time correlations within a polariton Bose–Einstein condensate in a CdTe microcavity. Phys. Rev. Lett. 100, 067402 (2008).
Assmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).
Adiyatullin, A. F. et al. Temporally resolved second-order photon correlations of exciton–polariton Bose–Einstein condensate formation. Appl. Phys. Lett. 107, 221107 (2015).
Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).
Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).
Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).
Liew, T. C. H. & Savona, V. Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010).
Bamba, M., Imamoğlu, A., Carusotto, I. & Ciuti, C. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802 (2011).
Gerace, D. & Savona, V. Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803 (2014).
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).
Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).
Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).
Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).
Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).
Maragkou, M. 2D semiconductors: one at a time. Nature Mater. 14, 564 (2015).
Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).
Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).
Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003).
Acknowledgements
We thank E. Cancellieri for providing the theoretical S-shape plot in Fig. 2 and R. Butté for helpful discussions. Special thanks to F. P. Laussy for his valuable suggestions. We gratefully acknowledge financial support from the ERC POLAFLOW project and the NSERC Discovery Grant programme.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sanvitto, D., Kéna-Cohen, S. The road towards polaritonic devices. Nature Mater 15, 1061–1073 (2016). https://doi.org/10.1038/nmat4668
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4668
This article is cited by
-
Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum
Nature Materials (2023)
-
Ultrafast imaging of polariton propagation and interactions
Nature Communications (2023)
-
From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations
Nature Materials (2023)
-
See how they run
Nature Materials (2023)
-
Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters
Nature Communications (2023)