The road towards polaritonic devices

Abstract

Polaritons are quasiparticles that form in semiconductors when an elementary excitation such as an exciton or a phonon interacts sufficiently strongly with light. In particular, exciton–polaritons have attracted tremendous attention for their unique properties, spanning from an ability to undergo ultra-efficient four-wave mixing to superfluidity in the condensed state. These quasiparticles possess strong intrinsic nonlinearities, while keeping most characteristics of the underlying photons. Here we review the most important features of exciton–polaritons in microcavities, with a particular emphasis on the emerging technological applications, the use of new materials for room-temperature operation, and the possibility of exploiting polaritons for quantum computation and simulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Microcavity polaritons.
Figure 2: Schematic representation of bistable behaviour under resonant excitation.
Figure 3: Polariton lasers.
Figure 4: Polariton transistors and gates.
Figure 5: Quantum behaviour of polaritons.

References

  1. 1

    Hopfield, J. J. & Thomas, D. G. Polariton absorption lines. Phys. Rev. Lett. 15, 22–25 (1965).

    CAS  Article  Google Scholar 

  2. 2

    Morris, G. C. & Sceats, M. G. The 4000 Å transition of crystal anthracene. Chem. Phys. 3, 164–179 (1974).

    Article  Google Scholar 

  3. 3

    Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Nitsche, W. H. et al. Algebraic order and the Berezinskii–Kosterlitz–Thouless transition in an exciton–polariton gas. Phys. Rev. B 90, 205430 (2014).

    Article  CAS  Google Scholar 

  7. 7

    Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Lagoudakis, K. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Bellessa, J. et al. Giant Rabi splitting between localized mixed plasmon–exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor. Phys. Rev. B 80, 033303 (2009).

    Article  CAS  Google Scholar 

  13. 13

    Lerario, G. et al. Room temperature Bloch surface wave polaritons. Opt. Lett. 39, 2068–2071 (2014).

    Article  Google Scholar 

  14. 14

    Symonds, C., Lemaitre, A., Homeyer, E., Plenet, J. C. & Bellessa, J. Emission of Tamm plasmon/exciton polaritons. Appl. Phys. Lett. 95, 151114 (2009).

    Article  CAS  Google Scholar 

  15. 15

    Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nature Phys. 10, 803–813 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  17. 17

    Keeling, J., Marchetti, F. M., Szymanska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Vladimirova, M. et al. Polariton–polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).

    Article  CAS  Google Scholar 

  19. 19

    Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nature Phys. 10, 500–504 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Steger, M. et al. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B 88, 235314 (2013).

    Article  CAS  Google Scholar 

  23. 23

    Vishnevsky, D. V. & Laussy, F. Effective attractive polariton–polariton interaction mediated by an exciton reservoir. Phys. Rev. B 90, 035413 (2014).

    Article  CAS  Google Scholar 

  24. 24

    Dominici, L. et al. Backjet, shock waves and ring solitons in the quantum pond of a polariton superfluid. Nature Commun. 6, 8993 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Baas, A., Karr, J.-P., Romanelli, M., Bramati, A. & Giacobino, E. Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator. Phys. Rev. B 70, 161307 (2004).

    Article  CAS  Google Scholar 

  26. 26

    Paraïso, T. K., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nature Mater. 9, 655–660 (2010).

    Article  CAS  Google Scholar 

  27. 27

    Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photon. 6, 50–55 (2011).

    Article  CAS  Google Scholar 

  28. 28

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  CAS  Google Scholar 

  29. 29

    Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nature Mater. 13, 271–278 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Christopoulos, S. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  CAS  Google Scholar 

  32. 32

    Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011).

    Article  CAS  Google Scholar 

  33. 33

    Das, A. et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107, 066405 (2011).

    Article  CAS  Google Scholar 

  34. 34

    Orosz, L. et al. LO-phonon-assisted polariton lasing in a ZnO-based microcavity. Phys. Rev. B 85, 121201 (2012).

    Article  CAS  Google Scholar 

  35. 35

    Litinskaya, M., Reineker, P. & Agranovich, V. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: photoluminescence. Phys. Rev. B 80, 235314 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

    Article  CAS  Google Scholar 

  38. 38

    Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316–3319 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

    Article  CAS  Google Scholar 

  42. 42

    Rossbach, G. et al. Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Phys. Rev. B 88, 165312 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008).

    Article  CAS  Google Scholar 

  44. 44

    Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).

    Article  Google Scholar 

  45. 45

    Gambino, S. et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photon. 1, 1042–1048 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    Article  CAS  Google Scholar 

  48. 48

    De Liberato, S. Light–matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).

    Article  CAS  Google Scholar 

  49. 49

    Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Article  Google Scholar 

  51. 51

    Brehier, A., Parashkov, R., Lauret, J. S. & Deleporte, E. Strong exciton–photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006).

    Article  CAS  Google Scholar 

  52. 52

    Nguyen, H. S. et al. Quantum confinement of zero-dimensional hybrid organic–inorganic polaritons at room temperature. Appl. Phys. Lett. 104, 081103 (2014).

    Article  CAS  Google Scholar 

  53. 53

    Agranovich, V. M., Basko, D. M., Rocca, G. C. L. & Bassani, F. Excitons and optical nonlinearities in hybrid organic–inorganic nanostructures. J. Phys. Condens. Matter 10, 9369–9400 (1998).

    CAS  Article  Google Scholar 

  54. 54

    Holmes, R. J., Kéna-Cohen, S., Menon, V. M. & Forrest, S. R. Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity. Phys. Rev. B 74, 235211 (2006).

    Article  CAS  Google Scholar 

  55. 55

    Wenus, J. et al. Hybrid organic–inorganic exciton–polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 235212 (2006).

    Article  CAS  Google Scholar 

  56. 56

    Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).

    CAS  Article  Google Scholar 

  57. 57

    Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Commun. 6, 8579 (2015).

    CAS  Article  Google Scholar 

  58. 58

    Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    CAS  Article  Google Scholar 

  59. 59

    Azzini, S. et al. Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99, 111106 (2011).

    Article  CAS  Google Scholar 

  60. 60

    Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  CAS  Google Scholar 

  61. 61

    Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Exp. 20, 5530–5537 (2012).

    CAS  Article  Google Scholar 

  62. 62

    Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    CAS  Article  Google Scholar 

  63. 63

    Schmutzler, J. et al. Determination of operating parameters for a GaAs-based polariton laser. Appl. Phys. Lett. 102, 081115 (2013).

    Article  CAS  Google Scholar 

  64. 64

    Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).

    Article  CAS  Google Scholar 

  65. 65

    Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).

    Article  CAS  Google Scholar 

  66. 66

    Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).

    CAS  Article  Google Scholar 

  67. 67

    Butté, R. et al. Phase diagram of a polariton laser from cryogenic to room temperature. Phys. Rev. B 80, 233301 (2009).

    Article  CAS  Google Scholar 

  68. 68

    Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Exp. 17, 15975–15982 (2009).

    CAS  Article  Google Scholar 

  69. 69

    Malpuech, G., Kavokin, A., Di Carlo, A. & Baumberg, J. J. Polariton lasing by exciton–electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002).

    Article  CAS  Google Scholar 

  70. 70

    Perrin, M., Senellart, P., Lemaître, A. & Bloch, J. Polariton relaxation in semiconductor microcavities: efficiency of electron–polariton scattering. Phys. Rev. B 72, 075340 (2005).

    Article  CAS  Google Scholar 

  71. 71

    Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  CAS  Google Scholar 

  72. 72

    Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008).

    Article  CAS  Google Scholar 

  73. 73

    Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    CAS  Article  Google Scholar 

  74. 74

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    CAS  Article  Google Scholar 

  75. 75

    Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

    Article  CAS  Google Scholar 

  76. 76

    Yang, G., MacDougal, M. & Dapkus, P. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).

    CAS  Article  Google Scholar 

  77. 77

    Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).

    Article  CAS  Google Scholar 

  78. 78

    Onishi, T. et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48, 1107–1112 (2012).

    CAS  Article  Google Scholar 

  79. 79

    Baten, M. Z. et al. GaAs-based high temperature electrically pumped polariton laser. Appl. Phys. Lett. 104, 231119 (2014).

    Article  CAS  Google Scholar 

  80. 80

    Ballarini, D. et al. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater. 2, 1076–1081 (2014).

    CAS  Article  Google Scholar 

  81. 81

    Miller, D. A. B. Are optical transistors the logical next step? Nature Photon. 4, 3–5 (2010).

    CAS  Article  Google Scholar 

  82. 82

    Liew, T., Kavokin, A. & Shelykh, I. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    CAS  Article  Google Scholar 

  83. 83

    Shelykh, I. A., Johne, R., Solnyshkov, D. D. & Malpuech, G. Optically and electrically controlled polariton spin transistor. Phys. Rev. B 82, 153303 (2010).

    Article  CAS  Google Scholar 

  84. 84

    Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

    Article  CAS  Google Scholar 

  85. 85

    Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    CAS  Article  Google Scholar 

  86. 86

    Ballarini, D. et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).

    CAS  Article  Google Scholar 

  87. 87

    De Giorgi, M. et al. Control and ultrafast dynamics of a two-fluid polariton switch. Phys. Rev. Lett. 109, 266407 (2012).

    CAS  Article  Google Scholar 

  88. 88

    De Giorgi, M. et al. Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112, 113602 (2014).

    Article  CAS  Google Scholar 

  89. 89

    Marsault, F. et al. Realization of an all optical exciton–polariton router. Appl. Phys. Lett. 107, 201115 (2015).

    Article  CAS  Google Scholar 

  90. 90

    Nguyen, H. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).

    CAS  Article  Google Scholar 

  91. 91

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nature Commun. 5, 3278 (2014).

    CAS  Article  Google Scholar 

  92. 92

    Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).

    Article  CAS  Google Scholar 

  93. 93

    Antón, C. et al. Quantum reflections and shunting of polariton condensate wave trains: implementation of a logic AND gate. Phys. Rev. B 88, 245307 (2013).

    Article  CAS  Google Scholar 

  94. 94

    Solnyshkov, D. D., Bleu, O. & Malpuech, G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices Microstruct. 83, 466–475 (2015).

    CAS  Article  Google Scholar 

  95. 95

    Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013).

    Article  CAS  Google Scholar 

  96. 96

    Dietrich, C. P. et al. Parametric relaxation in whispering gallery mode exciton–polariton condensates. Phys. Rev. B 91, 041202 (2015).

    Article  CAS  Google Scholar 

  97. 97

    Nguyen, H. S. et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett. 114, 036402 (2015).

    CAS  Article  Google Scholar 

  98. 98

    Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton–polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).

    Article  CAS  Google Scholar 

  99. 99

    Liew, T. C. H. & Savona, V. Multipartite polariton entanglement in semiconductor microcavities. Phys. Rev. A 84, 032301 (2011).

    Article  CAS  Google Scholar 

  100. 100

    Pagel, D., Fehske, H., Sperling, J. & Vogel, W. Strongly entangled light from planar microcavities. Phys. Rev. A 86, 052313 (2012).

    Article  CAS  Google Scholar 

  101. 101

    Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005).

    Article  CAS  Google Scholar 

  102. 102

    Ardizzone, V. et al. Bunching visibility of optical parametric emission in a semiconductor microcavity. Phys. Rev. B 86, 041301 (2012).

    Article  CAS  Google Scholar 

  103. 103

    Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nature Commun. 5, 3260 (2014).

    CAS  Article  Google Scholar 

  104. 104

    Demirchyan, S. S., Chestnov, I. Y., Alodjants, A. P., Glazov, M. M. & Kavokin, A. V. Qubits based on polariton Rabi oscillators. Phys. Rev. Lett. 112, 196403 (2014).

    CAS  Article  Google Scholar 

  105. 105

    Quochi, F. et al. Strongly driven semiconductor microcavities: from the polariton doublet to an ac Stark triplet. Phys. Rev. Lett. 80, 4733–4736 (1998).

    CAS  Article  Google Scholar 

  106. 106

    O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  CAS  Google Scholar 

  107. 107

    Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    CAS  Article  Google Scholar 

  108. 108

    López Carreño, J. C., Sánchez Muñoz, C., Sanvitto, D., del Valle, E. & Laussy, F. P. Exciting polaritons with quantum light. Phys. Rev. Lett. 115, 196402 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & Valle, E. d. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).

    Article  CAS  Google Scholar 

  110. 110

    Silva, B. et al. Measuring photon correlations simultaneously in time and frequency. Preprint at http://arXiv.org/abs/1406.0964 (2015).

  111. 111

    Kasprzak, J. et al. Second-order time correlations within a polariton Bose–Einstein condensate in a CdTe microcavity. Phys. Rev. Lett. 100, 067402 (2008).

    CAS  Article  Google Scholar 

  112. 112

    Assmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).

    Article  Google Scholar 

  113. 113

    Adiyatullin, A. F. et al. Temporally resolved second-order photon correlations of exciton–polariton Bose–Einstein condensate formation. Appl. Phys. Lett. 107, 221107 (2015).

    Article  CAS  Google Scholar 

  114. 114

    Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  CAS  Google Scholar 

  115. 115

    Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  CAS  Google Scholar 

  116. 116

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    CAS  Article  Google Scholar 

  117. 117

    Liew, T. C. H. & Savona, V. Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010).

    CAS  Article  Google Scholar 

  118. 118

    Bamba, M., Imamoğlu, A., Carusotto, I. & Ciuti, C. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802 (2011).

    Article  CAS  Google Scholar 

  119. 119

    Gerace, D. & Savona, V. Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803 (2014).

    Article  CAS  Google Scholar 

  120. 120

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    CAS  Article  Google Scholar 

  121. 121

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    CAS  Article  Google Scholar 

  122. 122

    Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  123. 123

    Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    CAS  Article  Google Scholar 

  124. 124

    Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).

    CAS  Article  Google Scholar 

  125. 125

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    CAS  Article  Google Scholar 

  126. 126

    Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Maragkou, M. 2D semiconductors: one at a time. Nature Mater. 14, 564 (2015).

    CAS  Article  Google Scholar 

  128. 128

    Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    CAS  Article  Google Scholar 

  129. 129

    Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).

    CAS  Article  Google Scholar 

  130. 130

    Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Cancellieri for providing the theoretical S-shape plot in Fig. 2 and R. Butté for helpful discussions. Special thanks to F. P. Laussy for his valuable suggestions. We gratefully acknowledge financial support from the ERC POLAFLOW project and the NSERC Discovery Grant programme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Daniele Sanvitto or Stéphane Kéna-Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanvitto, D., Kéna-Cohen, S. The road towards polaritonic devices. Nature Mater 15, 1061–1073 (2016). https://doi.org/10.1038/nmat4668

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing