Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites

Abstract

The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal–host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster’s optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure–property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Topology of the zeolite frameworks and Auger spectra of their silver clusters.
Figure 2: Ionization potentials of the heat-treated silver-exchanged zeolites.
Figure 3: Photoluminescence properties of heat-treated silver-exchanged zeolites.
Figure 4: EXAFS and ESR studies of the silver clusters.
Figure 5: LTA zeolites exchanged in a solution with excess silver ions.

References

  1. Martens, J. A. et al. NOx abatement in exhaust from lean-burn combustion engines by reduction of NO2 over silver-containing zeolite catalysts. Angew. Chem. Int. Ed. 37, 1901–1903 (1998).

    CAS  Article  Google Scholar 

  2. Vosch, T. et al. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl Acad. Sci. USA 104, 12616–12621 (2007).

    CAS  Article  Google Scholar 

  3. Richards, C. I. et al. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 130, 5038–5039 (2008).

    CAS  Article  Google Scholar 

  4. Henglein, A. Small-particle research—physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989).

    CAS  Article  Google Scholar 

  5. Mulvaney, P. & Henglein, A. Long-lived nonmetallic silver clusters in aqueous solution—a pulse-radiolysis study of their formation. J. Phys. Chem. 94, 4182–4188 (1990).

    CAS  Article  Google Scholar 

  6. Diez, I. et al. Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale 4, 4434–4437 (2012).

    CAS  Article  Google Scholar 

  7. Yu, J., Patel, S. A. & Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. 119, 2074–2076 (2007).

    Article  Google Scholar 

  8. Borsella, E. et al. Synthesis of silver clusters in silica-based glasses for optoelectronics applications. J. Non-Cryst. Solids 245, 122–128 (1999).

    CAS  Article  Google Scholar 

  9. Shestakov, M. V. et al. Lead silicate glass SiO2–PbF2 doped with luminescent Ag nanoclusters of a fixed site. RSC Adv. 4, 20699–20703 (2014).

    CAS  Article  Google Scholar 

  10. Coutino-Gonzalez, E. Determination and optimization of the luminescence external quantum efficiency of silver-clusters zeolite composites. J. Phys. Chem. C 117, 6998–7004 (2013).

    CAS  Article  Google Scholar 

  11. Grobet, P. J. & Schoonheydt, R. A. ESR on silver clusters in zeolite A. Surf. Sci. 156, 893–898 (1985).

    CAS  Article  Google Scholar 

  12. Seifert, R., Kunzmann, A. & Calzaferri, G. The yellow color of silver-containing zeolite A. Angew. Chem. Int. Ed. 37, 1521–1524 (1998).

    Article  Google Scholar 

  13. Wasowicz, T. & Michalik, J. Reactions of silver atoms and clusters in Ag-NaA zeolites. Radiat. Phys. Chem. 37, 427–432 (1991).

    CAS  Google Scholar 

  14. De Cremer, G. et al. Characterization of fluorescence in heat-treated silver-exchanged zeolites. J. Am. Chem. Soc. 131, 3049–3056 (2009).

    CAS  Article  Google Scholar 

  15. De Cremer, G. et al. In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment. Chem. Phys. Chem. 11, 1627–1631 (2010).

    CAS  Article  Google Scholar 

  16. Gellens, L. R., Mortier, W. J., Lissillour, R. & Lebeuze, A. Electronic-structure of the silver clusters in zeolites of type A and the faujasite type by molecular-orbital calculations. J. Phys. Chem. 86, 2509–2516 (1982).

    CAS  Article  Google Scholar 

  17. Gellens, L. R., Mortier, W. J., Schoonheydt, R. A. & Uytterhoeven, J. B. The nature of the charged silver clusters in dehydrated zeolites of type A. J. Phys. Chem. 85, 2783–2788 (1981).

    CAS  Article  Google Scholar 

  18. Gellens, L. R., Mortier, W. J. & Uytterhoeven, J. B. On the nature of the charged silver clusters in zeolites of type A, type X and type Y. Zeolites 1, 11–18 (1981).

    CAS  Article  Google Scholar 

  19. Sun, T. & Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev. 94, 857–870 (1994).

    CAS  Article  Google Scholar 

  20. Fonseca, A. M. & Neves, I. C. Study of silver species stabilized in different microporous zeolites. Micropor. Mesopor. Mater. 181, 83–87 (2013).

    CAS  Article  Google Scholar 

  21. Gaarenstroom, S. W. & Winograd, N. Initial and final-state effects in ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 67, 3500–3506 (1977).

    CAS  Article  Google Scholar 

  22. Mayoral, A., Carey, T., Anderson, P. A., Lubk, A. & Diaz, I. Atomic resolution analysis of silver ion-exchanged zeolite A. Angew. Chem. Int. Ed. 50, 11230–11233 (2011).

    CAS  Article  Google Scholar 

  23. Anson, A., Maham, Y., Lin, C. C. H., Kuznicki, T. M. & Kuznicki, S. M. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves. J. Nanosci. Nanotechnol. 9, 3134–3137 (2009).

    CAS  Article  Google Scholar 

  24. Blake, N. & Stucky, G. Alkali-metal clusters as prototypes for electron solvation in zeolites. J. Incl. Phenom. Macrocycl. Chem. 21, 299–324 (1995).

    CAS  Google Scholar 

  25. Kasai, P. H. Electron spin resonance studies of γ- and X-ray-irradiated zeolites. J. Chem. Phys. 43, 3322–3327 (1965).

    CAS  Article  Google Scholar 

  26. Foster, P. J., Leckenby, R. E. & Robbins, E. J. The ionization potentials of clustered alkali metal atoms. J. Phys. B 2, 478–483 (1969).

    Google Scholar 

  27. Honea, E. C., Homer, M. L., Persson, J. L. & Whetten, R. L. Generation and photoionization of cold Nan clusters—n to 200. Chem. Phys. Lett. 171, 147–154 (1990).

    CAS  Article  Google Scholar 

  28. Onwuagba, B. N. Ionization potentials in alkali-metal clusters. Nuovo Cimento D 13, 415–421 (1991).

    Article  Google Scholar 

  29. Martins, J. L., Buttet, J. & Car, R. Equilibrium geometries and electronic-structures of small sodium clusters. Phys. Rev. Lett. 53, 655–658 (1984).

    CAS  Article  Google Scholar 

  30. Kaye, G. W. C. & Laby, T. H. Tables of Physical and Chemical Constants 16th edn (Longman, 1995).

    Google Scholar 

  31. Jackschath, C., Rabin, I. & Schulze, W. Electron impact ionization of silver clusters Agn, n ≤ 36. Z. Phys. D 22, 517–520 (1992).

    CAS  Article  Google Scholar 

  32. Kuznetsov, A. S., Tikhomirov, V. K., Shestakov, M. V. & Moshchalkov, V. V. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale 5, 10065–10075 (2013).

    CAS  Article  Google Scholar 

  33. Choi, S., Dickson, R. M. & Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 41, 1867–1891 (2012).

    CAS  Article  Google Scholar 

  34. De Cremer, G. et al. Optical encoding of silver zeolite microcarriers. Adv. Mater. 22, 957–960 (2010).

    CAS  Article  Google Scholar 

  35. Devaux, A. et al. Self-absorption and luminescence quantum yields of dye-zeolite L composites. J. Phys. Chem. C 117, 23034–23047 (2013).

    CAS  Article  Google Scholar 

  36. Neidig, M. L. et al. Ag K-edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 133, 11837–11839 (2011).

    CAS  Article  Google Scholar 

  37. Yamamoto, T., Takenaka, S., Tanaka, T. & Baba, T. Stability of silver cluster in zeolite A and Y catalysts. J. Phys. Conf. Ser. 190, 012171 (2009).

    Article  Google Scholar 

  38. Gellens, L. R., Mortier, W. J. & Uytterhoeven, J. B. Oxidation and reduction of silver in zeolite Y—a structural study. Zeolites 1, 85–90 (1981).

    CAS  Article  Google Scholar 

  39. Smith, J. V. Molecular Sieve Zeolites-I Vol. 101 (American Chemical Society, 1974).

    Google Scholar 

  40. Mortier, W. J. & Schoonheydt, R. A. Surface and solid-state chemistry of zeolites. Prog. Solid State Chem. 16, 1–125 (1985).

    Article  Google Scholar 

  41. Freeman, D. C. & Stamires, D. N. Electrical conductivity of synthetic crystalline zeolites. J. Chem. Phys. 35, 799–806 (1961).

    CAS  Article  Google Scholar 

  42. Simon, U. & Franke, M. E. Electrical properties of nanoscaled host/guest compounds. Micropor. Mesopor. Mater. 41, 1–36 (2000).

    CAS  Article  Google Scholar 

  43. Kalogeras, I. M. & Vassilikou-Dova, A. Electrical properties of zeolitic catalysts. Defect Diffus. Forum 164, 1–36 (1998).

    CAS  Article  Google Scholar 

  44. Awala, H. et al. Template-free nanosized faujasite-type zeolites. Nature Mater. 14, 447–451 (2015).

    CAS  Article  Google Scholar 

  45. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chem. 5, 775–781 (2013).

    CAS  Article  Google Scholar 

  46. Ng, E.-P., Chateigner, D., Bein, T., Valtchev, V. & Mintova, S. Capturing ultrasmall EMT zeolite from template-free systems. Science 335, 70–73 (2012).

    CAS  Article  Google Scholar 

  47. Coutino-Gonzalez, E. et al. Thermally activated LTA(Li)-Ag zeolites with water-responsive photoluminescence properties. J. Mater. Chem. C 3, 11857–11867 (2015).

    CAS  Article  Google Scholar 

  48. Leyre, S. et al. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. Rev. Sci. Instrum. 85, 23115–23115 (2014).

    Article  Google Scholar 

  49. Borsboom, M. et al. The Dutch-Belgian beamline at the ESRF. J. Synchrotron Radiat. 5, 518–520 (1998).

    CAS  Article  Google Scholar 

  50. d’Acapito, F., Trapananti, A., Torrengo, S. & Mobilio, S. X-ray absorption spectroscopy: the Italian beamline GILDA of the ESRF. Not. Neutron. Luce di Sincrotrone 19, 14–23 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the EC through the project FP7-NMP-2012 SACS (GA-310651), the ERC projects SUPRAFUNCTION (GA-257305), LIGHT (GA-307523) and FLUOROCODE (GA-291593), the Marie-Curie projects ITN-iSwitch (GA No. 642196) and IEF-MULTITUDES (PIEF-GA-2012-326666), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC), the International Center for Frontier Research in Chemistry (icFRC), the ‘Fonds voor Wetenschappelijk Onderzoek FWO’ (G0990.11, G.0197.11, G.0962.13, G.0B39.15), the Flemish government (long-term structural funding-Methusalem grant CASAS METH/08/04 and ‘Configuration of Active Surfaces by Self-Assembly (CASAS2)’, METH/14/04), the Flemish ‘Strategisch Initiatief Materialen’ SoPPoM programme, the KU Leuven Research Fund (IDO/07/011), the Hercules foundation (HER/08/21), and the Belgian Federal Science Policy Office (IAP-VI/27). The experiments 26-01-865 and CH-4207 were performed on the DUBBLE-BM26A and GILDA-BM08 beamlines respectively of The European Synchrotron (ESRF), Grenoble, France. Access to DUBBLE was arranged through the general support of the Fund for Scientific Research-Flanders (FWO) for the use of central facilities. The authors thank the staff of the DUBBLE-BM26A and GILDA-BM08 beamlines (ESRF) for their assistance and technical support. We would like to thank UOP Antwerpen for their donation of the 3A, 4A and FAUX zeolites. O.F. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

P.S., M.R. and J.H. conceived the experiments. O.F., F.R. and S.B. conducted the photoelectron spectroscopy experiments. E.C.-G. and W.B. prepared the Ag–zeolites and conducted the optical characterization. P.L., D.G. and E.C.-G. performed the EXAFS measurements and analysis. D.D.V. and E.C.-G. performed the ESR measurements and analysis. O.F. and P.S. prepared the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Maarten Roeffaers, Johan Hofkens or Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fenwick, O., Coutiño-Gonzalez, E., Grandjean, D. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nature Mater 15, 1017–1022 (2016). https://doi.org/10.1038/nmat4652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4652

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing