Article | Published:

Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material

Nature Materials volume 15, pages 870875 (2016) | Download Citation

Abstract

Surface phonon–polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light–matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

  2. 2.

    et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

  3. 3.

    Nanophotonics: hyperbolic phonon–polaritons. Nature Mater. 13, 1081–1083 (2014).

  4. 4.

    Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy 100, 421–427 (2004).

  5. 5.

    et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

  6. 6.

    , , & Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

  7. 7.

    et al. Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators. Nano Lett. 13, 3690–3697 (2013).

  8. 8.

    , , , & Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

  9. 9.

    et al. Sub-diffraction, volume-confined polaritons in the natural hyperbolic material: hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

  10. 10.

    , , , & Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

  11. 11.

    et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015).

  12. 12.

    et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging. Nature Commun. 6, 7507 (2015).

  13. 13.

    et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

  14. 14.

    et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Commun. 5, 4782 (2014).

  15. 15.

    et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

  16. 16.

    et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotech. 10, 682–686 (2015).

  17. 17.

    et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14, 421–425 (2015).

  18. 18.

    et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nature Nanotech. 11, 9–15 (2016).

  19. 19.

    et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys. Rev. B 93, 085205 (2016).

  20. 20.

    & Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

  21. 21.

    et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).

  22. 22.

    et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photon. 10, 60–65 (2016).

  23. 23.

    et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

  24. 24.

    et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photon. 1, 833–839 (2014).

  25. 25.

    , , , & An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

  26. 26.

    et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

  27. 27.

    et al. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials. Preprint at (2015).

  28. 28.

    et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nature Mater. 14, 991–995 (2015).

  29. 29.

    , , , & Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys. Rev. Lett. 95, 063901 (2005).

  30. 30.

    Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems. Nano Lett. 6, 2604–2608 (2006).

  31. 31.

    , , , & Plasmonic luneburg and eaton lenses. Nature Nanotech. 6, 151–155 (2009).

  32. 32.

    & Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 045404 (2011).

  33. 33.

    , & Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230–233 (2002).

  34. 34.

    , , & Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005).

  35. 35.

    , , , & Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Opt. Express 20, 11615–11624 (2012).

  36. 36.

    et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

  37. 37.

    et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 15, 1272–1280 (2015).

  38. 38.

    et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013).

  39. 39.

    , , & Mid-infrared designer metals. Opt. Express 20, 12155–12165 (2012).

  40. 40.

    et al. A map for phase-change materials. Nature Mater. 7, 972–977 (2008).

  41. 41.

    et al. Resonant bonding in crystalline phase change materials. Nature Mater. 7, 653–658 (2008).

  42. 42.

    et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nature Mater. 11, 952–956 (2012).

  43. 43.

    et al. Disorder-induced localization in crystalline phase-change materials. Nature Mater. 10, 202–208 (2011).

  44. 44.

    , , & Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

  45. 45.

    et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

  46. 46.

    et al. Memory metamaterials. Science 325, 1518–1521 (2009).

  47. 47.

    & Digital metamaterials. Nature Mater. 13, 1115–1121 (2014).

  48. 48.

    & Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

Download references

Acknowledgements

We thank P. Lingnau for GST film sputtering. This work was supported by the Excellence Initiative of the German Federal and State governments, the Ministry of Innovation of North Rhine-Westphalia, and the DFG under SFB 917 (Nanoswitches).

Author information

Affiliations

  1. Institute of Physics (IA), RWTH Aachen University, Aachen 52056, Germany

    • Peining Li
    • , Xiaosheng Yang
    • , Tobias W. W. Maß
    • , Julian Hanss
    • , Martin Lewin
    • , Ann-Katrin U. Michel
    • , Matthias Wuttig
    •  & Thomas Taubner

Authors

  1. Search for Peining Li in:

  2. Search for Xiaosheng Yang in:

  3. Search for Tobias W. W. Maß in:

  4. Search for Julian Hanss in:

  5. Search for Martin Lewin in:

  6. Search for Ann-Katrin U. Michel in:

  7. Search for Matthias Wuttig in:

  8. Search for Thomas Taubner in:

Contributions

P.L. and T.T. conceived the concept. P.L. performed the s-SNOM measurements and the theoretical calculations. X.Y. carried out the optical switching and the FTIR experiments. T.W.W.M. performed the simulation. J.H., M.L. and A.-K.U.M. contributed to the optical switching. M.W. and T.T. supervised the project. All the authors discussed the results. P.L., M.W. and T.T. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Thomas Taubner.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Videos

  1. 1.

    Supplementary Movie 1

    Supplementary Movie 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4649

Further reading