Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material


Surface phonon–polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light–matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ultra-confined SPhPs enabled by an ultrathin GST layer on quartz.
Figure 2: Real-space imaging of ultra-confined SPhPs.
Figure 3: s-SNOM imaging of reversibly switched GST SPhP resonators.
Figure 4: Far-field reflection of rewritable SPhP resonators.


  1. 1

    Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Jacob, Z. Nanophotonics: hyperbolic phonon–polaritons. Nature Mater. 13, 1081–1083 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Hillenbrand, R. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy 100, 421–427 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article  Google Scholar 

  7. 7

    Caldwell, J. D. et al. Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators. Nano Lett. 13, 3690–3697 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Wang, T., Li, P., Hauer, B., Chigrin, D. N. & Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Caldwell, J. D. et al. Sub-diffraction, volume-confined polaritons in the natural hyperbolic material: hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging. Nature Commun. 6, 7507 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Commun. 5, 4782 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Brar, V. W. et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Dai, S. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotech. 10, 682–686 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater. 14, 421–425 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nature Nanotech. 11, 9–15 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Spann, B. T. et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys. Rev. B 93, 085205 (2016).

    Article  Google Scholar 

  20. 20

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Bruns, G. et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).

    Article  Google Scholar 

  22. 22

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nature Photon. 10, 60–65 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Michel, A. K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Michel, A. K. U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photon. 1, 833–839 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Yin, X. et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Rudé, M. et al. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials. Preprint at (2015).

  28. 28

    Waldecker, L. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nature Mater. 14, 991–995 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Karalis, A., Lidorikis, E., Ibanescu, M., Joannopoulos, J. D. & Soljačić, M. Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys. Rev. Lett. 95, 063901 (2005).

    Article  Google Scholar 

  30. 30

    Stockman, M. I. Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems. Nano Lett. 6, 2604–2608 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Zentgraf, T., Liu, Y., Mikkelsen, M. H., Valentine, J. & Zhang, X. Plasmonic luneburg and eaton lenses. Nature Nanotech. 6, 151–155 (2009).

    Article  Google Scholar 

  32. 32

    Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 045404 (2011).

    Article  Google Scholar 

  33. 33

    Njoroge, W. K., Wöltgens, H.-W. & Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230–233 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 72, 075405 (2005).

    Article  Google Scholar 

  35. 35

    Chakrabarty, A., Wang, F., Minkowski, F., Sun, K. & Wei, Q. H. Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Opt. Express 20, 11615–11624 (2012).

    Article  Google Scholar 

  36. 36

    Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Brown, L. V. et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 15, 1272–1280 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Chen, Y. G. et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Law, S., Adams, D. C., Taylor, A. M. & Wasserman, D. Mid-infrared designer metals. Opt. Express 20, 12155–12165 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Lencer, D. et al. A map for phase-change materials. Nature Mater. 7, 972–977 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Shportko, K. et al. Resonant bonding in crystalline phase change materials. Nature Mater. 7, 653–658 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nature Mater. 11, 952–956 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nature Mater. 10, 202–208 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Günter, G. et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

    Article  Google Scholar 

  46. 46

    Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Della Giovampaola, C. & Engheta, N. Digital metamaterials. Nature Mater. 13, 1115–1121 (2014).

    Article  Google Scholar 

  48. 48

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    CAS  Article  Google Scholar 

Download references


We thank P. Lingnau for GST film sputtering. This work was supported by the Excellence Initiative of the German Federal and State governments, the Ministry of Innovation of North Rhine-Westphalia, and the DFG under SFB 917 (Nanoswitches).

Author information




P.L. and T.T. conceived the concept. P.L. performed the s-SNOM measurements and the theoretical calculations. X.Y. carried out the optical switching and the FTIR experiments. T.W.W.M. performed the simulation. J.H., M.L. and A.-K.U.M. contributed to the optical switching. M.W. and T.T. supervised the project. All the authors discussed the results. P.L., M.W. and T.T. wrote the manuscript.

Corresponding author

Correspondence to Thomas Taubner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2059 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 1224 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, X., Maß, T. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nature Mater 15, 870–875 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing