Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proton transfer dynamics control the mechanism of O2 reduction by a non-precious metal electrocatalyst


Many chemical and biological processes involve the transfer of both protons and electrons. The complex mechanistic details of these proton-coupled electron transfer (PCET) reactions require independent control of both electron and proton transfer. In this report, we make use of lipid-modified electrodes to modulate proton transport to a Cu-based catalyst that facilitates the O2 reduction reaction (ORR), a PCET process important in fuel cells and O2 reduction enzymes. By quantitatively controlling the kinetics of proton transport to the catalyst, we demonstrate that undesired side products such as H2O2 and O2 arise from a mismatch between proton and electron transfer rates. Whereas fast proton kinetics induce H2O2 formation and sluggish proton flux produces O2, proton transfer rates commensurate with O–O bond breaking rates ensure that only the desired H2O product forms. This fundamental insight aids in the development of a comprehensive framework for understanding the ORR and PCET processes in general.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of a HBM that controls the thermodynamics and kinetics of protons and electrons.
Figure 2: Electrochemistry of an O2 reduction catalyst under varying regimes of proton transfer kinetics.
Figure 3: Control of proton transfer kinetics alters the pathways and product speciation of O2 reduction.
Figure 4: Kinetic isotope effects.
Figure 5: Regulation of proton transfer kinetics induces mechanistic changes of O2 reduction, which dictates the selectivity of products.


  1. 1

    Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Chang, C. J., Chang, M. C. Y., Damrauer, N. H. & Nocera, D. G. Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen. Biochim. Biophys. Acta 1655, 13–28 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Costentin, C., Robert, M. & Savéant, J.-M. Update 1 of: Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev. 110, PR1–PR40 (2010).

    Article  Google Scholar 

  5. 5

    Hammes-Schiffer, S. Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42, 1881–1889 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Horvath, S., Fernandez, L. E., Soudackov, A. V. & Hammes-Schiffer, S. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production. Proc. Natl Acad. Sci. USA 109, 15663–15668 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Migliore, A., Polizzi, N. F., Therien, M. J. & Beratan, D. N. Biochemistry and theory of proton-coupled electron transfer. Chem. Rev. 114, 3381–3465 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Soudackov, A. & Hammes-Schiffer, S. Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution. J. Phys. Chem. 113, 2385–2396 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Mayer, J. M. & Rhile, I. J. Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs. concerted pathways. Biochim. Biophys. Acta 1655, 51–58 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Mayer, J. M. Proton-coupled electron transfer: a reaction chemist’s view. Annu. Rev. Phys. Chem. 55, 363–390 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Xie, Y. & Anson, F. C. Analysis of the cyclic voltammetric responses exhibited by electrodes modified with monolayers of catalysts in the absence and presence of substrates. J. Electroanal. Chem. 384, 145–153 (1995).

    Article  Google Scholar 

  15. 15

    Li, Y., Tse, E. C. M., Barile, C. J., Gewirth, A. A. & Zimmerman, S. C. Photoresponsive molecular switch for regulating transmembrane proton-transfer kinetics. J. Am. Chem. Soc. 137, 14059–14062 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

    Google Scholar 

  17. 17

    Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science 251, 919–922 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Collman, J. P., Devaraj, N. K., Eberspacher, T. P. A. & Chidsey, C. E. D. Mixed azide-terminated monolayers: a platform for modifying electrode surfaces. Langmuir 22, 2457–2464 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Collman, J. P. et al. A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Collman, J. P., Hosseini, A., Eberspacher, T. A. & Chidsey, C. E. D. Selective anodic desorption for assembly of different thiol monolayers on the individual electrodes of an array. Langmuir 25, 6517–6521 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Collman, J. P. et al. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes. Proc. Natl Acad. Sci. USA 106, 7320–7323 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Irebo, T., Reece, S. Y., Sjödin, M., Nocera, D. G. & Hammarström, L. Proton-coupled electron transfer of tyrosine oxidation: buffer dependence and parallel mechanisms. J. Am. Chem. Soc. 129, 15462–15464 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Fecenko, C. J., Meyer, T. J. & Thorp, H. H. Electrocatalytic oxidation of tyrosine by parallel rate-limiting proton transfer and multisite electron-proton transfer. J. Am. Chem. Soc. 128, 11020–11021 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Chen, Z., Vannucci, A. K., Concepcion, J. J., Jurss, J. W. & Meyer, T. J. Proton-coupled electron transfer at modified electrodes by multiple pathways. Proc. Natl Acad. Sci. USA 108, E1461–E1469 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Wenger, O. S. Proton-coupled electron transfer with photoexcited metal complexes. Acc. Chem. Res. 46, 1517–1526 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Rosenthal, J. & Nocera, D. G. Role of proton-coupled electron transfer in O–O bond activation. Acc. Chem. Res. 40, 543–553 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Sjödin, M. et al. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. J. Am. Chem. Soc. 127, 3855–3863 (2005).

    Article  Google Scholar 

  28. 28

    Hatcher, L. & Karlin, K. Oxidant types in copper–dioxygen chemistry: the ligand coordination defines the Cun-O2 structure and subsequent reactivity. J. Biol. Inorg. Chem. 9, 669–683 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Thorseth, M. A., Letko, C. S., Tse, E. C. M., Rauchfuss, T. B. & Gewirth, A. A. Ligand effects on the overpotential for dioxygen reduction by tris(2-pyridylmethyl)amine derivatives. Inorg. Chem. 52, 628–634 (2012).

    Article  Google Scholar 

  30. 30

    McCrory, C. C. L., Ottenwaelder, X., Stack, T. D. P. & Chidsey, C. E. D. Kinetic and mechanistic studies of the electrocatalytic reduction of O2 to H2O with mononuclear Cu complexes of substituted 1,10-phenanthrolines. J. Phys. Chem. A 111, 12641–12650 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Thorseth, M. A., Tornow, C. E., Tse, E. C. M. & Gewirth, A. A. Cu complexes that catalyze the oxygen reduction reaction. Coord. Chem. Rev. 257, 130–139 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Barile, C. J. et al. Proton switch for modulating oxygen reduction by a copper electrocatalyst embedded in a hybrid bilayer membrane. Nature Mater. 13, 619–623 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Hosseini, A. et al. Hybrid bilayer membrane: a platform to study the role of proton flux on the efficiency of oxygen reduction by a molecular electrocatalyst. J. Am. Chem. Soc. 133, 11100–11102 (2011).

    CAS  Article  Google Scholar 

  34. 34

    Hosseini, A. et al. Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment. Langmuir 26, 17674–17678 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Tse, E. C. M. et al. Anion transport through lipids in a hybrid bilayer membrane. Anal. Chem. 87, 2403–2409 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Gewirth, A. A. & Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg. Chem. 49, 3557–3566 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Carley, A. N. & Kleinfeld, A. M. Flip-flop is the rate-limiting step for transport of free fatty acids across lipid vesicle membranes. Biochemistry 48, 10437–10445 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Rose, M. C. & Steuhr, J. Kinetics of proton transfer reactions in aqueous solution. III. Rates of internally hydrogen-bonded systems. J. Am. Chem. Soc. 90, 7205–7209 (1968).

    CAS  Article  Google Scholar 

  39. 39

    Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Li, M. F., Liao, L. W., Yuan, D. F., Mei, D. & Chen, Y.-X. pH effect on oxygen reduction reaction at Pt(111) electrode. Electrochim. Acta 110, 780–789 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Ghoneim, M. M., Clouser, S. & Yeager, E. Oxygen reduction kinetics in deuterated phosphoric acid. J. Electrochem. Soc. 132, 1160–1162 (1985).

    CAS  Article  Google Scholar 

  42. 42

    Higgins, D. C. & Chen, Z. Recent progress in non-precious metal catalysts for PEM fuel cell applications. Can. J. Chem. Eng. 91, 1881–1895 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Nogala, W. et al. Scanning electrochemical microscopy activity mapping of electrodes modified with laccase encapsulated in sol–gel processed matrix. Bioelectrochemistry 79, 101–107 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Proshlyakov, D. A. et al. Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290, 1588–1591 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Brändén, G., Gennis, R. B. & Brzezinski, P. Transmembrane proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta 1757, 1052–1063 (2006).

    Article  Google Scholar 

  46. 46

    Bento, I. et al. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC Struct. Biol. 10, 28 (2010).

    Article  Google Scholar 

  47. 47

    Albrecht, O., Gruler, H. & Sackmann, E. Polymorphism of phospholipid monolayers. J. Phys. France 39, 301–313 (1978).

    CAS  Article  Google Scholar 

  48. 48

    Gong, K., Du, F., Xia, Z., Durstock, M. & Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Campillo-Brocal, J. C., Lucas-Elio, P. & Sanchez-Amat, A. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. MicrobiologyOpen 2, 684–694 (2013).

    CAS  Article  Google Scholar 

Download references


E.C.M.T. acknowledges a Croucher Foundation Scholarship. C.J.B. acknowledges a National Science Foundation Graduate Research Fellowship (NSF DGE-1144245) and a Springborn Fellowship. We thank the US Department of Energy (DE-FG02-95ER46260) for support of this research. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, which are partially supported by the US Department of Energy (DE-FG02-07ER46453 and DE-FG02-07ER46471). We acknowledge J. Varnell for providing PANI-Fe-C, E. Barile for help with artwork, and R. Gennis, T. Rauchfuss, K. Suslick and R. Nuzzo for insightful discussions.

Author information




E.C.M.T., C.J.B., S.C.Z., A.H. and A.A.G. designed the experiments. E.C.M.T., C.J.B. and N.A.K. performed the experiments. Y.L. synthesized BTT. E.C.M.T., C.J.B., Y.L., J.P.G., S.C.Z., A.H. and A.A.G. wrote the paper. E.C.M.T., C.J.B., N.A.K., J.P.G., A.H. and A.A.G. analysed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrew A. Gewirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4599 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tse, E., Barile, C., Kirchschlager, N. et al. Proton transfer dynamics control the mechanism of O2 reduction by a non-precious metal electrocatalyst. Nature Mater 15, 754–759 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing