An elastic second skin

Abstract

We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanical properties of XPL and its crosslinking kinetics.
Figure 2: The visual impact of a 2-grade improvement (from grade 3 to grade 1) after applying XPL to the under-eye area.
Figure 3: Time-lapse photos extracted from video footage of skin retraction following a dermatological tenting test.
Figure 4: Pilot study evaluating XPL-induced changes in skin elasticity (Study B) when worn over 24 h on normal volar forearm skin.
Figure 5: Clinical data showing enhanced skin barrier function and sustained skin hydration for subjects (n = 22) with dry skin (Study C).
Figure 6: Second skin performance with normal wear.

References

  1. 1

    Irvine, A. D., McLean, W. H. & Leung, D. Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365, 1315–1327 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Schon, M. P., Boehncke, W. H. & Brocker, E. B. Psoriasis: clinical manifestations, pathogenesis and therapeutic perspectives. Discov. Med. 5, 253–258 (2005).

    Google Scholar 

  3. 3

    Schon, M. P. & Boehncke, W. H. Psoriasis. N. Engl. J. Med. 352, 1899–1912 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Bieber, T. Atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Yosipovitch, G. & Bernhard, J. D. Clinical practice. Chronic pruritus. N. Engl. J. Med. 368, 1625–1634 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Gilchrest, B. A. Skin aging and photoaging: an overview. J. Am. Acad. Dermatol. 21, 610–613 (1989).

    CAS  Article  Google Scholar 

  7. 7

    Balin, A. K. & Pratt, L. A. Physiological consequences of human skin aging. Cutis 43, 431–436 (1989).

    CAS  Google Scholar 

  8. 8

    Anderson, R. R. Lasers for dermatology and skin biology. J. Invest. Dermatol. 133, E21–E23 (2013).

    Article  Google Scholar 

  9. 9

    Rushmer, R. F., Buettner, K. J., Short, J. M. & Odland, G. F. The skin. Science 154, 343–348 (1966).

    CAS  Article  Google Scholar 

  10. 10

    Kim, D. H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Jang, K.-I. et al. Soft network composite materials with deterministic and bio-inspired designs. Nature Commun. 6, 6566 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Mitragotri, S., Blankschtein, D. & Langer, R. Ultrasound-mediated transdermal protein delivery. Science 269, 850–853 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Kost, J., Mitragotri, S., Gabbay, R. A., Pishko, M. & Langer, R. Transdermal monitoring of glucose and other analytes using ultrasound. Nature Med. 6, 347–350 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Clark, R. A., Ghosh, K. & Tonnesen, M. G. Tissue engineering for cutaneous wounds. J. Invest. Dermatol. 127, 1018–1029 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Meddahi-Pellé, A. et al. Organ repair, hemostasis, and in-vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew. Chem. Int. Ed. 53, 6369–6373 (2014).

    Article  Google Scholar 

  18. 18

    Davis, S. C. et al. The healing effect of over-the-counter (OTC) wound healing agents applied under semi-occlusive film dressing. Br. J. Dermatol. 172, 544–546 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Borde, A. et al. Increased water transport in PDMS silicone films by addition of excipients. Acta Biomater. 8, 579–588 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Hammock, M. L., Chortos, A., Tee, B. C., Tok, J. B. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Mater. 12, 938–944 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Linear Polydimethylsiloxanes CAS No. 63148-62-9 (European Centre for Ecotoxicology and Toxicology of Chemicals, 2011).

  23. 23

    Lewis, L. N., Stein, J., Gao, Y., Colborn, R. E. & Hutchins, G. Platinum catalysts used in the silicones industry. Their synthesis and activity in hydrosilylation. Platinum Met. Rev. 41, 66–75 (1997).

    CAS  Google Scholar 

  24. 24

    Annaidh, A. N., Bruyere, K., Destrade, M., Gilchrist, M. D. & Ottenio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139–148 (2012).

    Article  Google Scholar 

  25. 25

    Agache, P. G., Monneur, C., Leveque, J. L. & Rigal, J. D. Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. Res. 269, 221–232 (1980).

    CAS  Article  Google Scholar 

  26. 26

    Hendriks, F. M. et al. A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9, 274–283 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Manschot, J. F. & Brakkee, A. J. The measurement and modelling of the mechanical properties of human skin in-vivo–II. The model. J. Biomech. 19, 517–521 (1986).

    CAS  Article  Google Scholar 

  28. 28

    Diridollou, S. et al. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6, 214–221 (2000).

    Article  Google Scholar 

  29. 29

    Cua, A. B., Wilhelm, K. P. & Maibach, H. I. Elastic properties of human skin: relation to age, sex, and anatomical region. Arch. Dermatol. Res. 282, 283–288 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Kraft, J. N. & Lynde, C. W. Moisturizers: what they are and a practical approach to product selection. Skin Ther. Lett. 10, 1–8 (2005).

    CAS  Google Scholar 

  31. 31

    Boyer, G. et al. Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device. J. Mech. Behav. Biomed. Mater. 27, 273–282 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Pedersen, L. & Jemec, G. B. Mechanical properties and barrier function of healthy human skin. Acta Derm. Venereol. 86, 308–311 (2006).

    Article  Google Scholar 

  33. 33

    Gniadecka, M. & Serup, J. in Handbook of Noninvasive Methods and the Skin (eds Serup, J. & Jemec, G. B. E.) 329–335 (CRC Press, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors thank G. Grove and Z. D. Draelos for their helpful discussions and M. Su for her assistance with the in vivo use studies.

Author information

Affiliations

Authors

Contributions

B.Y., S.-Y.K., F.H.S., B.A.G. and R.R.A. contributed to the design and analysis of the in vivo use studies. A.A., N.R. and M.P. contributed to the design and development of material synthesis and topical formulation. A.A., N.R., M.P., A.N. and D.G.A. contributed to the characterization and analysis of the in vitro mechanical and rheological data. S.-Y.K. supervised the execution of the in vivo use studies. A.P. conducted in vivo Study B. B.Y. and R.L. managed the research efforts. B.Y., A.A., A.N., B.A.G., R.R.A. and R.L. wrote the manuscript with the help of the co-authors.

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

All of the authors hold a financial interest in Living Proof and/or Olivo Labs.

Supplementary information

Supplementary Information

Supplementary Information (PDF 495 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 860 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Kang, SY., Akthakul, A. et al. An elastic second skin. Nature Mater 15, 911–918 (2016). https://doi.org/10.1038/nmat4635

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing