Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning hardness in calcite by incorporation of amino acids

Abstract

Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure–property relationships of even the simplest building unit—mineral single crystals containing embedded macromolecules—remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0–7 mol%) or aspartic acid (0–4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal morphologies.
Figure 2: Occlusion of aspartic acid and glycine in calcite.
Figure 3: High-resolution PXRD analysis.
Figure 4: Solid-state NMR analysis.
Figure 5: Molecular dynamics simulations.
Figure 6: Mechanical properties.

Similar content being viewed by others

References

  1. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nature Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  2. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  3. Weber, E. & Pokroy, B. Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. Cryst. Eng. Comm. 17, 5873–5883 (2015).

    Article  CAS  Google Scholar 

  4. Gries, K., Kroger, R., Kubel, C., Fritz, M. & Rosenauer, A. Investigations of voids in the aragonite platelets of nacre. Acta Biomater. 5, 3038–3044 (2009).

    Article  CAS  Google Scholar 

  5. Li, H. Y. et al. Calcite prisms from mollusk shells (Atrina rigida): Swiss-cheese-like organic–inorganic single-crystal composites. Adv. Funct. Mater. 21, 2028–2034 (2011).

    Article  Google Scholar 

  6. Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).

    Article  CAS  Google Scholar 

  7. Stephenson, A. E. et al. Peptides enhance magnesium signature in calcite: insights into origins of vital effects. Science 322, 724–727 (2008).

    Article  CAS  Google Scholar 

  8. Kim, Y. Y. et al. Bio-inspired synthesis and mechanical properties of calcite-polymer particle composites. Adv. Mater. 22, 2082–2086 (2010).

    Article  CAS  Google Scholar 

  9. Kim, Y. Y. et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nature Mater. 10, 890–896 (2011).

    Article  CAS  Google Scholar 

  10. Kim, Y.-Y. et al. Structure and properties of nanocomposites formed by the occlusion of block copolymer worms and vesicles within calcite crystals. Adv. Funct. Mater. 26, 1382–1392 (2016).

    Article  CAS  Google Scholar 

  11. Kunitake, M. E., Mangano, L. M., Peloquin, J. M., Baker, S. P. & Estroff, L. A. Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells. Acta Biomater. 9, 5353–5359 (2013).

    Article  CAS  Google Scholar 

  12. Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater. 13, 501–507 (2014).

    Article  CAS  Google Scholar 

  13. Courtney, T. H. Mechanical Behavior of Materials 2nd edn (Waveland Press, 2005).

    Google Scholar 

  14. Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).

    Article  Google Scholar 

  15. Kunitake, M. E., Baker, S. P. & Estroff, L. A. The effect of magnesium substitution on the hardness of synthetic and biogenic calcite. MRS Commun. 2, 113–116 (2012).

    Article  CAS  Google Scholar 

  16. Borukhin, S. et al. Screening the incorporation of amino acids into an inorganic crystalline host: the case of calcite. Adv. Funct. Mater. 22, 4216–4224 (2012).

    Article  CAS  Google Scholar 

  17. Magnabosco, G. et al. Calcite single crystals as hosts for atomic-scale entrapment and slow release of drugs. Adv. Healthc. Mater. 4, 1510–1516 (2015).

    Article  CAS  Google Scholar 

  18. Metzler, R. A., Tribello, G. A., Parrinello, M. & Gilbert, P. Asprich peptides are occluded in calcite and permanently disorder biomineral crystals. J. Am. Chem. Soc. 132, 11585–11591 (2010).

    Article  CAS  Google Scholar 

  19. Albeck, S., Aizenberg, J., Addadi, L. & Weiner, S. Interactions of various skeletal intracrystalline components with calcite crystals. J. Am. Chem. Soc. 115, 11691–11697 (1993).

    Article  CAS  Google Scholar 

  20. Aizenberg, J., Hanson, J., Koetzle, T. F., Weiner, S. & Addadi, L. Control of macromolecule distribution within synthetic and biogenic single calcite crystals. J. Am. Chem. Soc. 119, 881–886 (1997).

    Article  CAS  Google Scholar 

  21. Kulak, A. N. et al. One-pot synthesis of an inorganic heterostructure: uniform occlusion of magnetite nanoparticles within calcite single crystals. Chem. Sci. 5, 738–743 (2014).

    Article  CAS  Google Scholar 

  22. Kulak, A. N., Yang, P. C., Kim, Y. Y., Armes, S. P. & Meldrum, F. C. Colouring crystals with inorganic nanoparticles. Chem. Commun. 50, 67–69 (2014).

    Article  CAS  Google Scholar 

  23. Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    Article  CAS  Google Scholar 

  24. Li, H. Y. & Estroff, L. A. Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals. Adv. Mater. 21, 470–473 (2009).

    Article  CAS  Google Scholar 

  25. Ihli, J., Bots, P., Kulak, A., Benning, L. G. & Meldrum, F. C. Elucidating mechanisms of diffusion-based calcium carbonate synthesis leads to controlled mesocrystal formation. Adv. Funct. Mater. 23, 1965–1973 (2013).

    Article  CAS  Google Scholar 

  26. Chen, C. L., Qi, J. H., Tao, J. H., Zuckermann, R. N. & De Yoreo, J. J. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics. Sci. Rep. 4, 6266 (2014).

    Article  CAS  Google Scholar 

  27. Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).

    Article  CAS  Google Scholar 

  28. Tomiak, P. J. et al. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quat. Geochronol. 16, 87–109 (2013).

    Article  Google Scholar 

  29. Elhadj, S., De Yoreo, J. J., Hoyer, J. R. & Dove, P. M. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc. Natl Acad. Sci. USA 103, 19237–19242 (2006).

    Article  CAS  Google Scholar 

  30. Hopp, T. P. & Woods, K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl Acad. Sci. USA 78, 3824–3828 (1981).

    Article  CAS  Google Scholar 

  31. De Yoreo, J. J. et al. Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited Kinetics. Cryst. Growth Des. 9, 5135–5144 (2009).

    Article  CAS  Google Scholar 

  32. Nielsen, L. C., De Yoreo, J. J. & DePaolo, D. J. General model for calcite growth kinetics in the presence of impurity ions. Geochim. Cosmochim. Acta 115, 100–114 (2013).

    Article  CAS  Google Scholar 

  33. Paquette, J. & Reeder, R. J. Relationship between surface-structure, growth-mechanism, and trace-element incorporation in calcite. Geochim. Cosmochim. Acta 59, 735–749 (1995).

    Article  CAS  Google Scholar 

  34. Staudt, W. J., Reeder, R. J. & Schoonen, M. A. A. Surface structural controls on compositional oning of SO42− and SeO42− in synthetic calcite single crystals. Geochim. Cosmochim. Acta 58, 2087–2098 (1994).

    Article  CAS  Google Scholar 

  35. Cho, K. R. et al. Direct observation of mineral-organic composite formation reveals occlusion mechanism. Nature Commun. 7, 10187 (2016).

    Article  Google Scholar 

  36. Bass, J. D. Mineral Physics & Crystallography: A Handbook of Physical Constants 45–63 (American Geophysical Union, 2013).

    Book  Google Scholar 

  37. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957).

    Article  Google Scholar 

  38. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  39. Clayton, J. D. & Knap, J. Phase field modeling of twinning in indentation of transparent crystals. Modelling Simul. Mater. Sci. Eng. 19, 085005 (2011).

    Article  Google Scholar 

  40. Foreman, A. J. E. & Makin, M. J. Dislocation movement through random arrays of obstacles. Philos. Mag. 14, 911–924 (1966).

    Article  CAS  Google Scholar 

  41. Akbulatov, S., Tian, Y. C. & Boulatov, R. Force-reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J. Am. Chem. Soc. 134, 7620–7623 (2012).

    Article  CAS  Google Scholar 

  42. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nature Chem. 6, 624–629 (2014).

    Article  Google Scholar 

  43. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  Google Scholar 

  44. Spruijt, E., van den Berg, S. A., Stuart, M. A. C. & van der Gucht, J. Direct measurement of the strength of single ionic bonds between hydrated charges. ACS Nano 6, 5297–5303 (2012).

    Article  CAS  Google Scholar 

  45. Demarchi, B. et al. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: isolation and testing of the closed system. Quat. Geochronol. 16, 144–157 (2013).

    Article  CAS  Google Scholar 

  46. Kaufman, D. S. & Manley, W. F. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quat. Sci. Rev. 17, 987–1000 (1998).

    Article  Google Scholar 

  47. Demarchi, B. et al. New experimental evidence for in-chain amino acid racemization of serine in a model peptide. Anal. Chem. 85, 5835–5842 (2013).

    Article  CAS  Google Scholar 

  48. Szeverenyi, N. M., Sullivan, M. J. & Maciel, G. E. Observation of spin exchange by two-dimensional Fourier-transform C-13 cross polarization-magic-angle spinning. J. Magn. Reson. 47, 462–475 (1982).

    CAS  Google Scholar 

  49. Thompson, S. P. et al. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80, 075107 (2009).

    Article  CAS  Google Scholar 

  50. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    Article  CAS  Google Scholar 

  51. Kim, Y.-Y. et al. Dataset for ‘Tuning hardness in calcite by incorporation of amino acids’. Research Data Leeds Repositoryhttp://doi.org/10.5518/46 (2016).

Download references

Acknowledgements

This work was supported by an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship (F.C.M. and Y.-Y.K., EP/H005374/1), by an EPSRC Materials World Network grant (EP/J018589/1, F.C.M. and Y.-Y.K.) and an EPSRC Programme Grant (grant EP/I001514/1) which funds the Materials Interface with Biology (MIB) consortium (F.C.M., J.H.H. and D.S.). We acknowledge Diamond Light Source for time on beamline I11 under commissioning time and proposal EE10137. L.A.E., J.D.C., M.E.K. and S.P.B. were supported by the US National Science Foundation (NSF) via a Materials World Network grant (DMR-1210304). B.P. acknowledges support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement no [336077]. B.D. and K.P. were supported by the Leverhulme Trust and the EU reintegration grant (PERG07-GA-2010-268429, FP7), project ‘mAARiTIME’. Ashely Coutu and Sheila Taylor are thanked for technical help for RP-HPLC analysis. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC Program (DMR-1120296). The authors also thank Matthew Collins for his intellectual contribution to the development of the study and for helpful discussions throughout.

Author information

Authors and Affiliations

Authors

Contributions

Y.-Y.K. led the experimental work, preparing samples and carrying out EM and XRD, and analysing the data; B.D. and K.P. performed HPLC measurements and analysed the occlusion data; J.D.C. and M.E.K. carried out nanoindentation measurements, J.D.C., S.P.B. and L.A.E. analysed and modelled mechanical data; S.P.B. and L.A.E. co-supervised J.D.C. and M.E.K.; D.S. carried out molecular dynamic simulations work and C.L.F. and J.H.H. supervised D.S. and analysed simulation data; C.C.T. assisted with the PXRD experiments; B.P. assisted with analysis and discussion of the PXRD data; D.G.R. and M.J.D. performed the NMR studies and analyses; F.C.M. originated and supervised the project. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Yi-Yeoun Kim, Shefford P. Baker or Fiona C. Meldrum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YY., Carloni, J., Demarchi, B. et al. Tuning hardness in calcite by incorporation of amino acids. Nature Mater 15, 903–910 (2016). https://doi.org/10.1038/nmat4631

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing