Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex

Abstract

Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thin, flexible neural electrode arrays with fully bioresorbable construction based on patterned silicon nanomembranes (Si NMs) as the conducting component.
Figure 2: In vivo neural recordings in rats using a passive, bioresorbable electrode array.
Figure 3: In vivo chronic recordings in rats using a passive, bioresorbable electrode array.
Figure 4: Immunohistology analysis.
Figure 5: Bioresorbable actively multiplexed neural electrode array.
Figure 6: Acute in vivo microscale electrocorticography (μECoG) with a 64-channel, bioresorbable, actively multiplexed array of measurement electrodes.

Similar content being viewed by others

References

  1. Niedermeyer, E. & da Silva, F. L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams Wilkins, 2005).

    Google Scholar 

  2. Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy—designing devices for seizure control. Nature Clin. Pract. Neurol. 4, 190–201 (2008).

    Article  CAS  Google Scholar 

  3. McKhann, G. M., Schoenfeld-McNeill, J., Born, D. E., Haglund, M. M. & Ojemann, G. A. Intraoperative hippocampal electrocorticography to predict the extent of hippocampal resection in temporal lobe epilepsy surgery. J. Neurosurg. 93, 44–52 (2000).

    Article  Google Scholar 

  4. Whitmer, D. et al. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front. Hum. Neurosci. 6, 155 (2012).

    Article  Google Scholar 

  5. Litt, B. et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001).

    Article  CAS  Google Scholar 

  6. Shapiro, M., Becske, T., Sahlein, D., Babb, J. & Nelson, P. K. Stent-supported aneurysm coiling: a literature survey of treatment and follow-up. Am. J. Neuroradiol. 33, 159–163 (2012).

    Article  CAS  Google Scholar 

  7. Wholey, M. H. et al. Global experience in cervical carotid artery stent placement. Catheter. Cardio. Inter. 50, 160–167 (2000).

    Article  CAS  Google Scholar 

  8. Frizzel, R. T. & Fisher, W. S. III Cure, morbidity, and mortality associated with embolization of brain arteriovenous malformations: a review of 1246 patients in 32 series over a 35-year period. Neurosurgery 37, 1031–1040 (1995).

    Article  CAS  Google Scholar 

  9. McNett, M. M. & Horowitz, D. A. International multidisciplinary consensus conference on multimodality monitoring: ICU processes of care. Neurocrit. Care 21, 215–228 (2014).

    Article  Google Scholar 

  10. Mayevsky, A., Manor, T., Meilin, S., Doron, A. & Ouaknine, G. E. Real-time multiparametric monitoring of the injured human cerebral cortex–a new approach. Acta Neurochir. Suppl. 71, 78–81 (1998).

    CAS  Google Scholar 

  11. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nature Commun. 4, 1575 (2013).

    Article  Google Scholar 

  12. Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neurosci. 14, 1599–1605 (2011).

    Article  CAS  Google Scholar 

  13. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nature Neurosci. 18, 310–315 (2015).

    Article  CAS  Google Scholar 

  14. Escabí, M. A. et al. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J. Neurophysiol. 112, 1566–1583 (2014).

    Article  Google Scholar 

  15. Qing, Q. et al. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl Acad. Sci. USA 107, 1882–1887 (2010).

    Article  CAS  Google Scholar 

  16. Xiang, Z. et al. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Microeng. 24, 065015 (2014).

    Article  Google Scholar 

  17. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  Google Scholar 

  18. Kozai, T. D. Y. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Mater. 11, 1065–1073 (2012).

    Article  CAS  Google Scholar 

  19. Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nature Commun. 5, 5259 (2014).

    Article  CAS  Google Scholar 

  20. Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9, 4465–4474 (2015).

    Article  CAS  Google Scholar 

  21. Daube, J. & Rubin, D. Clinical Neurophysiology (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  22. King-Stephens, D. et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 56, 959–967 (2015).

    Article  Google Scholar 

  23. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  CAS  Google Scholar 

  24. Saha, R. et al. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo. IEEE Trans. Neural. Sys. Rehab. Eng. 18, 489–497 (2010).

    Article  Google Scholar 

  25. Fontes, M. B. A. Electrodes for bio-application: recording and stimulation. J. Phys. Conf. Ser. 421, 012019 (2013).

    Article  Google Scholar 

  26. Oskam, G., Long, J. G., Natarajan, A. & Searson, P. C. Electrochemical deposition of metals onto silicon. J. Phys. D 31, 1927–1949 (1998).

    Article  CAS  Google Scholar 

  27. Zhang, X. G. Electrochemistry of Silicon and its Oxide (Kluwer Academic, 2001).

    Google Scholar 

  28. Schmickler, W. & Santos, E. Interfacial Electrochemistry Ch. 11 (Springer, 2010).

    Book  Google Scholar 

  29. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. & Ohwada, M. Growth of native oxide on a silicon surface. J. Appl. Phys. 68, 1272–1281 (1990).

    Article  CAS  Google Scholar 

  30. Seidel, H., Csepregi, L., Heuberger, A. & Baumgartel, H. Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137, 3612–3626 (1990).

    Article  CAS  Google Scholar 

  31. Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P. V. An overview of poly(lactic-coglycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014).

    Article  CAS  Google Scholar 

  32. Shaw, F.-Z. Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? J. Neurophysiol. 91, 63–77 (2004).

    Article  Google Scholar 

  33. Pearce, P. S. et al. Spike–wave discharges in adult Sprague–Dawley rats and their implications for animal models of temporal lobe epilepsy. Epilepsy Behav. 32, 121–131 (2014).

    Article  Google Scholar 

  34. Rodgers, K. M., Dudek, F. E. & Barth, D. S. Progressive, seizure-like, spike-wave discharges are common in both injured and uninjured sprague-dawley rats: implications for the fluid percussion injury model of post-traumatic epilepsy. J. Neurosci. 35, 9194–9204 (2015).

    Article  CAS  Google Scholar 

  35. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  Google Scholar 

  36. Ryu, S. I. & Shenoy, K. V. Human cortical prostheses: lost in translation? Neurosurg. Focus 27, E5 (2009).

    Article  Google Scholar 

  37. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  CAS  Google Scholar 

  38. Biran, R., Martin, D. C. & Tresco, P. A. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. A 82, 169–178 (2007).

    Article  Google Scholar 

  39. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    Article  CAS  Google Scholar 

  40. Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article  CAS  Google Scholar 

  41. Badawy, W. A. & Al-Kharafi, F. M. Corrosion and passivation behaviors of molybdenum in aqueous solutions of different pH. Electrochim. Acta 44, 693–702 (1998).

    Article  CAS  Google Scholar 

  42. Kang, S. et al. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 7, 9297–9305 (2015).

    CAS  Google Scholar 

  43. Kang, S.-K. et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24, 4427–4434 (2014).

    Article  CAS  Google Scholar 

  44. Hwang, S.-W. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 8, 5843–5851 (2014).

    Article  CAS  Google Scholar 

  45. Kue, R. et al. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. Biomaterials 20, 1195–1201 (1999).

    Article  CAS  Google Scholar 

  46. Bal, B. S. & Rahaman, M. N. Orthopedic applications of silicon nitride ceramics. Acta Biomater. 8, 2889–2898 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Defense Advanced Research Projects Agency, the Penn Medicine Neuroscience Center Pilot Grant, T32- Brain Injury Research Training Grant (5T32NS043126-12) and the Mirowski Family Foundation. Images in figures 2e, 3a and 6d from 3D Rat Anatomy Software (www.biosphera.org).

Author information

Authors and Affiliations

Authors

Contributions

K.J.Y., D.K., B.L. and J.A.R. designed the research. K.J.Y., D.K., S.-W.H., B.H.K., N.H.K., S.M.W., K.C., H.F., K.J.S., H.N.L., S.-K.K., J.-H.K. and J.Y.L. fabricated the devices and electronics. K.J.Y., D.K., S.M.W., M. Trumpis, H.F., M. Thompson, H.B., M.A.D., T.L. and J.V. conceived and performed bench tests, and analysis. D.K., K.J.Y., H.J., A.G.R., M.A.D. and T.H.L. performed in vivo experiments and analysed the data. D.T. and F.E.J. performed biocompatibility and histology studies. H.C. and Y.H. performed mechanical simulations. K.J.Y., D.K., A.G.R., M.Trumpis, J.V., B.L. and J.A.R. wrote the manuscript.

Corresponding authors

Correspondence to Brian Litt or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7145 kb)

Supplementary Information

Supplementary movie 1 (MOV 16023 kb)

Supplementary Information

Supplementary movie 2 (MOV 1642 kb)

Supplementary Information

Supplementary movie 3 (MOV 1383 kb)

Supplementary Information

Supplementary movie 4 (MOV 1413 kb)

Supplementary Information

Supplementary movie 5 (MOV 1455 kb)

Supplementary Information

Supplementary movie 6 (MOV 4949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Kuzum, D., Hwang, SW. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nature Mater 15, 782–791 (2016). https://doi.org/10.1038/nmat4624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing