Observation of ionic Coulomb blockade in nanopores


Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale1. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ion transport through the sub-nm nanopore junction.
Figure 2: Current–voltage characteristics (IV) of a 0.6-nm MoS2 nanopore in a potassium chloride aqueous solution (KCl).
Figure 3: Valence-dependent ion transport.
Figure 4: pH-induced conductance oscillations.


  1. 1

    Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1997).

    Google Scholar 

  2. 2

    Perrin, M. L., Burzuri, E. & van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Article  Google Scholar 

  4. 4

    Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Krems, M. & Di Ventra, M. Ionic coulomb blockade in nanopores. J. Phys. Condens. Matter 25, 065101 (2013).

    Article  Google Scholar 

  7. 7

    Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).

    Article  Google Scholar 

  8. 8

    Kaufman, I. K., McClintock, P. & Eisenberg, R. Coulomb blockade model of permeation and selectivity in biological ion channels. New J. Phys. 17, 083021 (2015).

    Article  Google Scholar 

  9. 9

    Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nature Nanotech. 4, 713–720 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Powell, M. R., Cleary, L., Davenport, M., Shea, K. J. & Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nature Nanotech. 6, 798–802 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nature Nanotech. 10, 1053–1057 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Liu, K., Feng, J. D., Kis, A. & Radenovic, A. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano 8, 2504–2511 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Farimani, A. B., Min, K. & Aluru, N. R. DNA base detection using a single-layer MoS2 . ACS Nano 8, 7914–7922 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Ho, C. et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA 102, 10445–10450 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Cervera, J., Schiedt, B. & Ramirez, P. A Poisson/Nernst–Planck model for ionic transport through synthetic conical nanopores. Europhys. Lett. 71, 35–41 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Radenovic, A., Trepagnier, E., Csencsits, R., Downing, K. H. & Liphardt, J. Fabrication of 10 nm diameter hydrocarbon nanopores. Appl. Phys. Lett. 93, 183101 (2008).

    Article  Google Scholar 

  18. 18

    Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Fulton, T. A. & Dolan, G. J. Observation of single-electron charging effects in small tunnel-junctions. Phys. Rev. Lett. 59, 109–112 (1987).

    CAS  Article  Google Scholar 

  20. 20

    Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Kluwer, 1997).

    Google Scholar 

  21. 21

    Parsegian, A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, J., Kamenev, A. & Shklovskii, B. I. Conductance of ion channels and nanopores with charged walls: a toy model. Phys. Rev. Lett. 95, 148101 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Zhang, J., Kamenev, A. & Shklovskii, B. Ion exchange phase transitions in water-filled channels with charged walls. Phys. Rev. E 73, 051205 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Traversi, F. et al. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotech. 8, 939–945 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  Google Scholar 

  26. 26

    Lee, J. et al. Stabilization of graphene nanopore. Proc. Natl Acad. Sci. USA 111, 7522–7526 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Hong, I.-P., Brun, C., Pivetta, M., Patthey, F. & Schneider, W.-D. Coulomb blockade phenomena observed in supported metallic nanoislands. Front. Phys. 1, 13 (2013).

    Article  Google Scholar 

  28. 28

    Romero, H. E. & Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 95, 156801 (2005).

    Article  Google Scholar 

  29. 29

    Heiranian, M., Farimani, A. B. & Aluru, N. R. Water desalination with a single-layer MoS2 nanopore. Nature Commun. 6, 8616 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Dumcenco, D. et al. Large-area epitaxial monolayer MoS2 . ACS Nano 9, 4611–4620 (2015).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the European Research Council (grant no. 259398, PorABEL), SNSF Consolidator grant (BIONIC BSCGI0_157802) and SNSF Sinergia Grant no. 147607. We thank the Centre Interdisciplinaire de Microscopie Électronique (CIME) at EPFL for access to electron microscopes and D. Alexander for help with Cs-corrected TEM (Titan Themis). We thank S. Marion and P. Leburton for their careful reading of our manuscript and for the helpful comments. Device fabrication was partially carried out at the EPFL Center for Micro/Nanotechnology (CMi).

Author information




J.F. conceived the idea, performed the measurements and interpreted the results. J.F. and K.L. fabricated the devices. J.F. and M.G. performed data analysis. D.D. and A.K. provided CVD-grown MoS2 samples. M.D.V. proposed the current–molarity relation. J.F. and A.R. designed the experiments and wrote the manuscript. A.R. supervised the work. All authors commented on the manuscript.

Corresponding authors

Correspondence to Jiandong Feng or Aleksandra Radenovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Liu, K., Graf, M. et al. Observation of ionic Coulomb blockade in nanopores. Nature Mater 15, 850–855 (2016). https://doi.org/10.1038/nmat4607

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing