Metal oxides for optoelectronic applications

Abstract

Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Electronic structures of Si and metal oxides.
Figure 2: Vapour-phased metal oxide and thin-film transistor.
Figure 3: Solution-processed metal oxide.
Figure 4: Metal oxide electronics.

References

  1. 1

    Spear, W. & Le Comber, P. Substitutional doping of amorphous silicon. Solid State Commun. 17, 1193–1196 (1975).

    Article  Google Scholar 

  2. 2

    Klasens, H. A. & Koelmans, H. A tin oxide field-effect transistor. Solid State Electron. 7, 701–702 (1964).

    Article  CAS  Google Scholar 

  3. 3

    Nomura, K. et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269–1272 (2003).

    Article  CAS  Google Scholar 

  4. 4

    Wang, L. et al. High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Mater. 5, 893–900 (2006).

    Article  CAS  Google Scholar 

  5. 5

    Presley, R. et al. Tin oxide transparent thin-film transistors. J. Phys. D: Appl. Phys. 37, 2810–2813 (2004).

    Article  CAS  Google Scholar 

  6. 6

    Hoffman, R., Norris, B. J. & Wager, J. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003).

    Article  CAS  Google Scholar 

  7. 7

    Denton, E. P., Rawson, H. & Stanworth, J. E. Vanadate Glasses. Nature 173, 1030–1032 (1954).

    Article  CAS  Google Scholar 

  8. 8

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  CAS  Google Scholar 

  9. 9

    Kamiya, T., Nomura, K. & Hosono, H. Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping. J. Disp. Technol. 5, 273–288 (2009).

    Article  CAS  Google Scholar 

  10. 10

    Kimura, M. et al. Extraction of trap densities in ZnO thin-film transistors and dependence on oxygen partial pressure during sputtering of ZnO films. IEEE Trans. Electron. Dev. 58, 3018–3024 (2011).

    Article  CAS  Google Scholar 

  11. 11

    Hsieh, H.-H., Kamiya, T., Nomura, K., Hosono, H. & Wu, C.-C. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Appl. Phys. Lett. 92, 133503 (2008).

    Article  CAS  Google Scholar 

  12. 12

    Facchetti, A. & Marks, T. J. Transparent Electronics: From Synthesis to Application (Wiley, 2010).

    Google Scholar 

  13. 13

    Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–86 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M. & Hosono, H. Chemical design and thin film preparation of p-type conductive transparent oxides. J. Electroceram. 4, 407–414 (2000).

    Article  CAS  Google Scholar 

  15. 15

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  16. 16

    Anthony, J. E. Organic electronics: addressing challenges. Nature Mater. 13, 773–775 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  CAS  Google Scholar 

  18. 18

    Li, Z., Liu, Z., Sun, H. & Gao, C. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015).

    Article  CAS  Google Scholar 

  19. 19

    Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).

    Article  CAS  Google Scholar 

  20. 20

    Aoki, A. & Sasakura, H. Tin oxide thin film transistors. Jpn J. Appl. Phys. 9, 582 (1970).

    Article  CAS  Google Scholar 

  21. 21

    Carcia, P. F., McLean, R. S., Reilly, M. H. & Nunes, G. Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering. Appl. Phys. Lett. 82, 1117 (2003).

    Article  CAS  Google Scholar 

  22. 22

    Brox-Nilsen, C., Jidong, J., Yi, L., Peng, B. & Song, A. M. Sputtered ZnO thin-film transistors with carrier mobility over 50 cm2 V−1 s−1. IEEE Trans. Electron. Dev. 60, 3424–3429 (2013).

    Article  CAS  Google Scholar 

  23. 23

    Lee, E. et al. Gate capacitance-dependent field-effect mobility in solution-processed oxide semiconductor thin-film transistors. Adv. Funct. Mater. 24, 4689–4697 (2014).

    Article  CAS  Google Scholar 

  24. 24

    Lin, Y.-Y., Hsu, C.-C., Tseng, M.-H., Shyue, J.-J. & Tsai, F.-Y. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl. Mater. Interfaces 7, 22610–22617 (2015).

  25. 25

    Se Yeob, P. et al. Improvement in photo-bias stability of high-mobility indium zinc oxide thin-film transistors by oxygen high-pressure annealing. IEEE Electr. Dev. Lett. 34, 894–896 (2013).

    Article  CAS  Google Scholar 

  26. 26

    Joo Hyon, N. et al. Indium oxide thin-film transistors fabricated by RF sputtering at room temperature. IEEE Electr. Dev. Lett. 31, 567–569 (2010).

    Article  CAS  Google Scholar 

  27. 27

    Yabuta, H. et al. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering. Appl. Phys. Lett. 89, 112123 (2006).

    Article  CAS  Google Scholar 

  28. 28

    Chowdhury, M. D. H., Migliorato, P. & Jang, J. Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 98, 153511 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Jung, J. S. et al. The impact of SiNx gate insulators on amorphous indium-gallium-zinc oxide thin film transistors under bias-temperature-illumination stress. Appl. Phys. Lett. 96, 193506 (2010).

    Article  CAS  Google Scholar 

  30. 30

    Moon, Y.-K. et al. Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator. Appl. Phys. Lett. 95, 013507 (2009).

    Article  CAS  Google Scholar 

  31. 31

    Nomura, K., Kamiya, T., Hirano, M. & Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 95, 013502 (2009).

    Article  CAS  Google Scholar 

  32. 32

    Kim, M.-M., Kim, M.-H., Ryu, S.-m., Lim, J. & Choi, D.-K. Coplanar homojunction a-InGaZnO thin film transistor fabricated using ultraviolet irradiation. RSC Adv. 5, 82947–82951 (2015).

    Article  CAS  Google Scholar 

  33. 33

    Barquinha, P., Pereira, L., Goncalves, G., Martins, R. & Fortunato, E. Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156, H161–H168 (2009).

    Article  CAS  Google Scholar 

  34. 34

    Ogo, Y. et al. P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93, 032113 (2008).

    Article  CAS  Google Scholar 

  35. 35

    Martins, R. F. P. et al. Recyclable, flexible, low-power oxide electronics. Adv. Funct. Mater. 23, 2153–2161 (2013).

    Article  CAS  Google Scholar 

  36. 36

    Matsuzaki, K. et al. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 93, 202107 (2008).

    Article  CAS  Google Scholar 

  37. 37

    Fortunato, E. et al. Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Appl. Phys. Lett. 96, 192102 (2010).

    Article  CAS  Google Scholar 

  38. 38

    Sanal, K. C., Vikas, L. S. & Jayaraj, M. K. Room temperature deposited transparent p-channel CuO thin film transistors. Appl. Surf. Sci. 297, 153–157 (2014).

    Article  CAS  Google Scholar 

  39. 39

    Jeong, S. & Moon, J. Low-temperature, solution-processed metal oxide thin film transistors. J. Mater. Chem. 22, 1243–1250 (2012).

    Article  CAS  Google Scholar 

  40. 40

    Ohya, Y., Niwa, T., Ban, T. & Takahashi, Y. Thin film transistor of ZnO fabricated by chemical solution deposition. Jpn J. Appl. Phys. 40, 291–298 (2001).

    Google Scholar 

  41. 41

    Ong, B. S., Li, C., Li, Y., Wu, Y. & Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129, 2750–2751 (2007).

    Article  CAS  Google Scholar 

  42. 42

    Lin, Y.-H. et al. High-performance ZnO transistors processed via an aqueous carbon-free metal oxide precursor route at temperatures between 80–180 °C. Adv. Mater. 25, 4340–4346 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Kim, H. S., Byrne, P. D., Facchetti, A. & Marks, T. J. High performance solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 130, 12580–12581 (2008).

    Article  CAS  Google Scholar 

  44. 44

    Han, S.-Y., Herman, G. S. & Chang, C.-h. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 133, 5166–5169 (2011).

    Article  CAS  Google Scholar 

  45. 45

    Rim, Y. S. et al. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J. Mater. Chem. 22, 12491–12497 (2012).

    Article  CAS  Google Scholar 

  46. 46

    Hwan Hwang, Y. et al. An 'aqueous route' for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater. 5, e45 (2013).

    Article  CAS  Google Scholar 

  47. 47

    Banger, K. K. et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process. Nature Mater. 10, 45–50 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Jeong, S. et al. Metal salt-derived In-Ga-Zn-O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors. J. Mater. Chem. C 1, 4236–4243 (2013).

    Article  CAS  Google Scholar 

  49. 49

    Kim, Y. H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128–132 (2012).

    Article  CAS  Google Scholar 

  50. 50

    Lin, Y.-H. et al. High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv. Sci. 2, 1500058 (2015).

    Article  CAS  Google Scholar 

  51. 51

    Perelaer, J. et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010).

    Article  CAS  Google Scholar 

  52. 52

    Choi, C.-H., Lin, L.-Y., Cheng, C.-C. & Chang, C.-h. Printed oxide thin film transistors: a mini review. ECS J. Solid State Sci. Technol. 4, P3044–P3051 (2015).

    Article  CAS  Google Scholar 

  53. 53

    Lee, D. H., Chang, Y. J., Herman, G. S. & Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843–847 (2007).

    Article  CAS  Google Scholar 

  54. 54

    Lee, W. H., Lee, S. J., Lim, J. A. & Cho, J. H. Printed In-Ga-Zn-O drop-based thin-film transistors sintered using intensely pulsed white light. RSC Adv. 5, 78655–78659 (2015).

    Article  CAS  Google Scholar 

  55. 55

    Choi, Y. et al. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors. Thin Solid Films 518, 6249–6252 (2010).

    Article  CAS  Google Scholar 

  56. 56

    Leppäniemi, J., Huttunen, O.-H., Majumdar, H. & Alastalo, A. Flexography-printed In2O3 Semiconductor layers for high-mobility thin-film transistors on flexible plastic substrate. Adv. Mater. 27, 7168–7175 (2015).

    Article  CAS  Google Scholar 

  57. 57

    Spiehl, D., Haming, M., Sauer, H. M., Bonrad, K. & Dorsam, E. Engineering of flexo- and gravure-printed indium–zinc-oxide semiconductor layers for high-performance thin-film transistors. IEEE Trans. Electr. Dev. 62, 2871–2877 (2015).

    Article  CAS  Google Scholar 

  58. 58

    Hong, K., Kim, S. H., Lee, K. H. & Frisbie, C. D. Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic. Adv. Mater. 25, 3413–3418 (2013).

    Article  CAS  Google Scholar 

  59. 59

    Yu, J. et al. Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique. J. Mater. Chem. C 3, 9509–9513 (2015).

    Article  CAS  Google Scholar 

  60. 60

    Bashir, A. et al. High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv. Mater. 21, 2226–2231 (2009).

    Article  CAS  Google Scholar 

  61. 61

    Pattanasattayavong, P., Thomas, S., Adamopoulos, G., McLachlan, M. A. & Anthopoulos, T. D. P-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett. 102, 163505 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Kim, M. G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Mater. 10, 382–388 (2011).

    Article  CAS  Google Scholar 

  63. 63

    Hennek, J. W., Kim, M.-G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors. J. Am. Chem. Soc. 134, 9593–9596 (2012).

    Article  CAS  Google Scholar 

  64. 64

    Rim, Y. S., Lim, H. S. & Kim, H. J. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. ACS Appl. Mater. Interfaces 5, 3565–3571 (2013).

    Article  CAS  Google Scholar 

  65. 65

    Hennek, J. W. et al. Oxygen “getter” effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. J. Am. Chem. Soc. 135, 10729–10741 (2013).

    Article  CAS  Google Scholar 

  66. 66

    Smith, J. et al. Cation size effects on the electronic and structural properties of solution-processed In-X-O thin films. Adv. Electron. Mater. 1, 1500146 (2015).

    Article  CAS  Google Scholar 

  67. 67

    Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett. 15, 416–421 (2015).

    Article  CAS  Google Scholar 

  68. 68

    Yu, X. et al. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. Proc. Natl Acad. Sci. USA 112, 3217–3222 (2015).

    Article  CAS  Google Scholar 

  69. 69

    Goldberger, J., Sirbuly, D. J., Law, M. & Yang, P. ZnO nanowire transistors. J. Phys. Chem. B 109, 9–14 (2004).

    Article  CAS  Google Scholar 

  70. 70

    Arnold, M. S., Avouris, P., Pan, Z. W. & Wang, Z. L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659–663 (2002).

    Article  CAS  Google Scholar 

  71. 71

    Ng, H. T. et al. Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004).

    Article  CAS  Google Scholar 

  72. 72

    Ju, S. et al. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotech. 2, 378–384 (2007).

    Article  CAS  Google Scholar 

  73. 73

    Liao, L. et al. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology 20, 085203 (2009).

    Article  CAS  Google Scholar 

  74. 74

    Sun, B. & Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005).

    Article  CAS  Google Scholar 

  75. 75

    Ko, S. H. et al. ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Appl. Phys. Lett. 92, 154102 (2008).

    Article  CAS  Google Scholar 

  76. 76

    Cho, S. Y. et al. Novel zinc oxide inks with zinc oxide nanoparticles for low-temperature, solution-processed thin-film transistors. Chem. Mater. 24, 3517–3524 (2012).

    Article  CAS  Google Scholar 

  77. 77

    Kawazoe, H. et al. P-type electrical conduction in transparent thin films of CuAlO2 . Nature 389, 939–942 (1997).

    Article  CAS  Google Scholar 

  78. 78

    Kudo, A., Yanagi, H., Hosono, H. & Kawazoe, H. SrCu2O2: a p-type conductive oxide with wide band gap. Appl. Phys. Lett. 73, 220–222 (1998).

    Article  CAS  Google Scholar 

  79. 79

    Kawazoe, H., Yanagi, H., Ueda, K. & Hosono, H. Transparent p-type conducting oxides: design and fabrication of p–n heterojunctions. MRS Bull. 25, 28–36 (2000).

    Article  CAS  Google Scholar 

  80. 80

    Chiu, T.-W., Tonooka, K. & Kikuchi, N. Fabrication of ZnO and CuCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes. Thin Solid Films 516, 5941–5947 (2008).

    Article  CAS  Google Scholar 

  81. 81

    Gurlo, A., Bârsan, N., Ivanovskaya, M., Weimar, U. & Göpel, W. In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 . Sensor. Actuat. B-Chem. 47, 92–99 (1998).

    Article  CAS  Google Scholar 

  82. 82

    Bai, S. et al. Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2 . Sensor. Actuat. B-Chem. 150, 749–755 (2010).

    Article  CAS  Google Scholar 

  83. 83

    Yuhas, B. D., Habas, S. E., Fakra, S. C. & Mokari, T. Probing compositional variation within hybrid nanostructures. ACS Nano 3, 3369–3376 (2009).

    Article  CAS  Google Scholar 

  84. 84

    Huang, H. et al. Low-temperature growth of SnO2 nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv. Funct. Mater. 21, 2680–2686 (2011).

    Article  CAS  Google Scholar 

  85. 85

    Kim, K.-W. et al. The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sensor. Actuat. B-Chem. 123, 318–324 (2007).

    Article  CAS  Google Scholar 

  86. 86

    Ivanovskaya, M., Kotsikau, D., Faglia, G. & Nelli, P. Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sensor. Actuat. B-Chem. 96, 498–503 (2003).

    Article  CAS  Google Scholar 

  87. 87

    Cui, G., Zhang, M. & Zou, G. Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p–n horizontal-multi-layer heterostructure for room temperature H2S sensor application. Sci. Rep. 3, 1–8 (2013).

    Google Scholar 

  88. 88

    Minami, T., Nishi, Y. & Miyata, T. High-Efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl. Phys. Express 6, 044101 (2013).

    Article  CAS  Google Scholar 

  89. 89

    Brittman, S. et al. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. Nano Lett. 14, 4665–4670 (2014).

    Article  CAS  Google Scholar 

  90. 90

    Akinaga, H. & Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010).

    Article  CAS  Google Scholar 

  91. 91

    Lv, H. et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode. Appl. Phys. Lett. 94, 213502 (2009).

    Article  CAS  Google Scholar 

  92. 92

    Lee, M.-J. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476–1481 (2009).

    Article  CAS  Google Scholar 

  93. 93

    Sun, B. et al. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 105, 061630 (2009).

    Article  CAS  Google Scholar 

  94. 94

    Seo, J. W. et al. Transparent flexible resistive random access memory fabricated at room temperature. Appl. Phys. Lett. 95, 133508 (2009).

    Article  Google Scholar 

  95. 95

    Martins, R. et al. Write-erase and read paper memory transistor. Appl. Phys. Lett. 93, 203501 (2008).

    Article  CAS  Google Scholar 

  96. 96

    Watanabe, Y. Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention. Appl. Phys. Lett. 66, 1770–1772 (1995).

    Article  CAS  Google Scholar 

  97. 97

    Baeg, K.-J. et al. Charge-trap flash-memory oxide transistors enabled by copper–zirconia composites. Adv. Mater. 26, 7170–7177 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Nomura, K. et al. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn–O, observed by bulk sensitive X-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 202117 (2008).

    Article  CAS  Google Scholar 

  99. 99

    Zhang, L. et al. Correlated metals as transparent conductors. Nature Mater. 15, 204–210 (2016).

    Article  CAS  Google Scholar 

  100. 100

    Choisnet, J., Bizo, L., Retoux, R. & Raveau, B. Antimony and antimony–tin doped indium oxide, IAO and IATO: promising transparent conductors. Solid State Sci. 6, 1121–1123 (2004).

    Article  CAS  Google Scholar 

  101. 101

    Makino, T. et al. Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga. Appl. Phys. Lett. 85, 759–761 (2004).

    Article  CAS  Google Scholar 

  102. 102

    Servaites, J. D., Yeganeh, S., Marks, T. J. & Ratner, M. A. Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv. Funct. Mater. 20, 97–104 (2010).

    Article  CAS  Google Scholar 

  103. 103

    Wang, D. H., Kyaw, A. K. K., Gupta, V., Bazan, G. C. & Heeger, A. J. Enhanced efficiency parameters of solution-processable small-molecule solar cells depending on ITO sheet resistance. Adv. Energ. Mater. 3, 1161–1165 (2013).

    Article  CAS  Google Scholar 

  104. 104

    Minami, T. Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516, 5822–5828 (2008).

    Article  CAS  Google Scholar 

  105. 105

    Liu, J., Hains, A. W., Wang, L. & Marks, T. J. Low-indium content bilayer transparent conducting oxide thin films as effective anodes in organic photovoltaic cells. Thin Solid Films 518, 3694–3699 (2010).

    Article  CAS  Google Scholar 

  106. 106

    Zhou, N. et al. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes. Adv. Mater. 26, 1098–104 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Irwin, M. D., Buchholz, D. B., Hains, A. W., Chang, R. P. & Marks, T. J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    Article  Google Scholar 

  108. 108

    Steirer, K. X. et al. Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Org. Electron. 11, 1414–1418 (2010).

    Article  CAS  Google Scholar 

  109. 109

    Berry, J. J. et al. Surface treatment of NiO hole transport layers for organic solar cells. IEEE J. Sel. Top. Quant. Electron. 16, 1649–1655 (2010).

    Article  CAS  Google Scholar 

  110. 110

    Zilberberg, K., Trost, S., Schmidt, H. & Riedl, T. Solution processed vanadium pentoxide as charge extraction layer for organic solar cells. Adv. Energ. Mater. 1, 377–381 (2011).

    Article  CAS  Google Scholar 

  111. 111

    Shrotriya, V., Li, G., Yao, Y., Chu, C.-W. & Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006).

    Article  CAS  Google Scholar 

  112. 112

    Han, S. et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes. Org. Electron. 10, 791–797 (2009).

    Article  CAS  Google Scholar 

  113. 113

    Kröger, M. et al. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301 (2009).

    Article  CAS  Google Scholar 

  114. 114

    Gwinner, M. C. et al. Doping of organic semiconductors using molybdenum trioxide: a quantitative time-dependent electrical and spectroscopic study. Adv. Funct. Mater. 21, 1432–1441 (2011).

    Article  CAS  Google Scholar 

  115. 115

    Stubhan, T. et al. High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension. Appl. Phys. Lett. 98, 253308 (2011).

    Article  CAS  Google Scholar 

  116. 116

    Meyer, J., Khalandovsky, R., Görrn, P. & Kahn, A. MoO3 Films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23, 70–73 (2011).

    Article  CAS  Google Scholar 

  117. 117

    Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  CAS  Google Scholar 

  118. 118

    Steim, R., Kogler, F. R. & Brabec, C. J. Interface materials for organic solar cells. J. Mater. Chem. 20, 2499–2512 (2010).

    Article  CAS  Google Scholar 

  119. 119

    White, M. S., Olson, D. C., Shaheen, S. E., Kopidakis, N. & Ginley, D. S. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  CAS  Google Scholar 

  120. 120

    Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005).

    Article  CAS  Google Scholar 

  121. 121

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Commun. 4, 1446 (2013).

    Article  CAS  Google Scholar 

  122. 122

    Sun, Y., Seo, J. H., Takacs, C. J., Seifter, J. & Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

    Article  CAS  Google Scholar 

  123. 123

    Liao, H.-H., Chen, L.-M., Xu, Z., Li, G. & Yang, Y. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Appl. Phys. Lett. 92, 173303 (2008).

    Article  CAS  Google Scholar 

  124. 124

    Lee, K. et al. Air-stable polymer electronic devices. Adv. Mater. 19, 2445–2449 (2007).

    Article  CAS  Google Scholar 

  125. 125

    Hau, S. K. et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).

    Article  CAS  Google Scholar 

  126. 126

    Yusoff, A. R. b. M. et al. A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ. Sci. 8, 303–316 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Kyaw, A. K. K. et al. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107 (2008).

    Article  CAS  Google Scholar 

  128. 128

    Bakke, J. R., Pickrahn, K. L., Brennan, T. P. & Bent, S. F. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3, 3482–3508 (2011).

    Article  CAS  Google Scholar 

  129. 129

    Wang, J.-C. et al. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J. Mater. Chem. 20, 862–866 (2010).

    Article  CAS  Google Scholar 

  130. 130

    Zhang, H. & Ouyang, J. High-performance inverted polymer solar cells with lead monoxide-modified indium tin oxides as the cathode. Org. Electron. 12, 1864–1871 (2011).

    Article  CAS  Google Scholar 

  131. 131

    Chen, C.-P., Chen, Y.-D. & Chuang, S.-C. High-performance and highly durable inverted organic photovoltaics embedding solution-processable vanadium oxides as an interfacial hole-transporting layer. Adv. Mater. 23, 3859–3863 (2011).

    CAS  Google Scholar 

  132. 132

    Lin, M.-Y. et al. Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells. Org. Electron. 11, 1828–1834 (2010).

    Article  CAS  Google Scholar 

  133. 133

    Leem, D.-S. et al. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23, 4371–4375 (2011).

    Article  CAS  Google Scholar 

  134. 134

    Guo, F. et al. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ. Sci. 8, 1690–1697 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Northwestern University Materials Research Science and Engineering Center (NSF MRSEC DMR-1121262), ONR (MURI N00014-11-1-0690), AFOSR (FA 9550-08-1-0331) and Polyera Corp. for support of the Northwestern University research described here.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tobin J. Marks or Antonio Facchetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Marks, T. & Facchetti, A. Metal oxides for optoelectronic applications. Nature Mater 15, 383–396 (2016). https://doi.org/10.1038/nmat4599

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing