Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Nucleic acid memory

Nucleic acid memory has a retention time far exceeding electronic memory. As an alternative storage media, DNA surpasses the information density and energy of operation offered by flash memory.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Change of storage needs over time.
Figure 2: Mechanism of NAM information degradation by hydrolysis.
Figure 3: Generic barrier models and memory retention.

References

  1. Jinbo, U., Kato, T. & Ito, M. Entomol. Sci. 14, 107–124 (2011).

    Article  Google Scholar 

  2. Allentoft, M. E. et al. Proc. R. Soc. B 279, 4724–4733 (2012).

    Article  CAS  Google Scholar 

  3. Prufer, K. et al. Nature 505, 43–49 (2014).

    Article  Google Scholar 

  4. Orlando, L. et al. Nature 499, 74–78 (2013).

    Article  CAS  Google Scholar 

  5. Benson, E. et al. Nature 523, 441–444 (2015).

    Article  CAS  Google Scholar 

  6. Rothemund, P. W. K. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  7. Zhang, F. et al. Nature Nanotech. 10, 779–784 (2015).

    Article  CAS  Google Scholar 

  8. Yang, Y. R., Liu, Y. & Yan, H. Bioconjugate Chem. 26, 1381–1395 (2015).

    Article  CAS  Google Scholar 

  9. Takabayashi, S. et al. Nanoscale 6, 13928–13938 (2014).

    Article  CAS  Google Scholar 

  10. Martin, E. et al. Nature 510, 288–292 (2014).

    Article  CAS  Google Scholar 

  11. McDonough, W. & Braungart, M. Cradle to Cradle: Remaking the Way We Make Things (North Point Press, 2002).

    Google Scholar 

  12. Converting Waste Agricultural Biomass into a Resource (United Nations Environment Programme, 2015).

  13. Malyshev, D. A. et al. Nature 509, 385–388 (2014).

    Article  CAS  Google Scholar 

  14. Green, M. R. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, 2012).

    Google Scholar 

  15. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  16. Goltry, S. et al. Nanoscale 7, 10382–10390 (2015).

    Article  CAS  Google Scholar 

  17. Zadegan, R. M., Jepsen, M. D., Hildebrandt, L. L., Birkedal, V. & Kjems, J. Small 11, 1811–1817 (2015).

    Article  CAS  Google Scholar 

  18. Cannon, B. L. et al. ACS Photonics 2, 398–404 (2015).

    Article  CAS  Google Scholar 

  19. Zadegan, R. M. et al. ACS Nano 6, 10050–10053 (2012).

    Article  CAS  Google Scholar 

  20. Qian, L., Winfree, E. & Bruck, J. Nature 475, 368–372 (2011).

    Article  CAS  Google Scholar 

  21. Church, G. M., Gao, Y. & Kosuri, S. Science 337, 1628 (2012).

    Article  CAS  Google Scholar 

  22. Goldman, N. et al. Nature 494, 77–80 (2013).

    Article  CAS  Google Scholar 

  23. Materials Genome Initiative Strategic Plan (National Science and Technology Council, 2014).

  24. Arden, W. et al. (eds) More-than-Moore (ITRS, 2010); http://go.nature.com/fHSt4t

    Google Scholar 

  25. SemiSynBio Consortium and Roadmap Development (The National Institute of Standards and Technology, 2015); http://go.nature.com/PzwrM2

  26. Bob, K. Past, Present and Future of DNA Sequencing (Illumina, 2013); http://go.nature.com/MtTrRk

    Google Scholar 

  27. Hayden, E. C. Nature 507, 294–295 (2014).

    Article  Google Scholar 

  28. Shendure, J. & Aiden, E. L. Nature Biotechnol. 30, 1084–1094 (2012).

    Article  CAS  Google Scholar 

  29. Carr, P. A. & Church, G. M. Nature Biotechnol. 27, 1151–1162 (2009).

    Article  CAS  Google Scholar 

  30. Retterer, S. T. & Simpson, M. L. Curr. Opin. Biotechnol. 23, 522–528 (2012).

    Article  CAS  Google Scholar 

  31. Metzker, M. L. Genome Res. 15, 1767–1776 (2005).

    Article  CAS  Google Scholar 

  32. Lee, C. C., Snyder, T. M. & Quake, S. R. Nucleic Acids Res. 38, 2514–2521 (2010).

    Article  CAS  Google Scholar 

  33. Kim, C. et al. J. Vac. Sci. Technol. B 22, 3163–3167 (2004).

    Article  CAS  Google Scholar 

  34. Chow, B. Y., Emig, C. J. & Jacobson, J. M. Proc. Natl Acad. Sci. USA 106, 15219–15224 (2009).

    Article  CAS  Google Scholar 

  35. Summary Report for the SRC Workshop on “Synergies between Semiconductors and Synthetic Biology” (SemiSynBio) (Semiconductor Research Corporation, 2013).

  36. Branton, D. et al. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  37. Olasagasti, F. et al. Nature Nanotech. 5, 798–806 (2010).

    Article  CAS  Google Scholar 

  38. Stoloff, D. H. & Wanunu, M. Curr. Opin. Biotechnol. 24, 699–704 (2013).

    Article  CAS  Google Scholar 

  39. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Angew. Chem. Int. Ed. 54, 2552–2555 (2015).

    Article  CAS  Google Scholar 

  40. Blow, M. J. et al. Genome Res. 18, 1347–1353 (2008).

    Article  CAS  Google Scholar 

  41. Scharer, O. D. Angew. Chem. Int. Ed. 42, 2946–2974 (2003).

    Article  Google Scholar 

  42. Zhiping, Z., Yi, W., Wong, H. S. P. & Wong, S. S. Electron Device Lett. 34, 1005–1007 (2013).

    Article  Google Scholar 

  43. Ivanova, N. V. & Kuzmina, M. L. Mol. Ecol. Resour. 13, 890–898 (2013).

    Article  CAS  Google Scholar 

  44. Kim, C., Park, C., Yoo, S. & Lee, S. IEEE Trans. Consum. Electron. 61, 206–214 (2015).

    Article  Google Scholar 

  45. MinION MkI Oxford NanoPore Technologies http://go.nature.com/wYqldy

  46. Merritt, R. DNA chip will plug into handsets. EE Times (6 September 2014).

    Google Scholar 

  47. Emerging Research Devices in International Technology Roadmap for Semiconductors (ITRS, 2011).

  48. Hilbert, M. & Lopez, P. Science 332, 60–65 (2011).

    Article  CAS  Google Scholar 

  49. Gantz, J. & Reinsel, D. The Digital Universe Decade — Are You Ready? (IDC, 2010).

    Google Scholar 

  50. Gantz, J. & Reinsel, D. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East (IDC, 2012).

    Google Scholar 

  51. Turner, V. & Gantz, J. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things (IDC, 2014).

    Google Scholar 

  52. Xu, Z. W. J. Comput. Sci. Technol. 29, 177–181 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Research described in this Commentary was supported in part by the Micron Foundation, the Semiconductor Research Corporation, the National Institute of General Medical Sciences of the National Institutes of Health (K25GM093233), and the National Science Foundation (CMMI–1344915). Special thanks are given to K. Marker and D. Zahn for their thoughtful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George M. Church or William L. Hughes.

Ethics declarations

Competing interests

W.L.H. and R.M.Z have received financial support to explore NAM technologies from the Semiconductor Research Corporation, the Function Accelerated nanomaterial Engineering Research Center, and from the Micron Foundation. G.M.C has patents licensed to Oxford Nanopore Technologies, equity in Genia-Roche for nanopore sequencing, financial involvement in multiple next-generation sequencing and synthesis companies, and financial support from Technicolor on DNA-storage technologies.

Supplementary information

Supplementary information

Supplementary information (PDF 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirnov, V., Zadegan, R., Sandhu, G. et al. Nucleic acid memory. Nature Mater 15, 366–370 (2016). https://doi.org/10.1038/nmat4594

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing