Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide



Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13]2− building blocks. Of the three terminal disulfide (S22−) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structures of molybdenum sulfide materials.
Figure 2: Spectroscopic characterization of a-MoSx catalyst.
Figure 3: HAADF-STEM analysis.
Figure 4: Electrochemical properties of a-MoSx electrodes.
Figure 5: Proposed catalytic pathway for H2 evolution.
Figure 6: DFT-calculated potential catalytic intermediates.


  1. 1

    McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Huan, T. N. et al. Bio-inspired noble metal-free nanomaterials approaching platinum performances for H2 evolution and uptake. Energy Environ. Sci. (2016).

  4. 4

    McKone, J. R., Marinescu, S. C., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 5, 865–878 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Andreiadis, E. S. et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions. Nature Chem. 5, 48–53 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Mater. 11, 963–969 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Morales-Guio, C. G. & Hu, X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47, 2671–2681 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J. & Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2, 1916–1923 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Jaramillo, T. F. et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 112, 17492–17498 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nature Chem. 6, 248–253 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Merki, D., Fierro, S., Vrubel, H. & Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Mater. 12, 850–855 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Tran, P. D. et al. Novel cobalt/nickel–tungsten–sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6, 2452–2459 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Huang, Z. et al. Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew. Chem. Int. Ed. 54, 15181–15185 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Tran, P. D. et al. Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the Earth for hydrogen generation. Chem. Eur. J. 18, 13994–13999 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Seger, B. et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+psilicon photocathode. Angew. Chem. Int. Ed. 51, 9128–9131 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Gratzel, M. & Hu, X. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nature Commun. 5, 3059 (2014).

    Article  Google Scholar 

  21. 21

    Hou, Y. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Mater. 10, 434–438 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Bourgeteau, T. et al. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy Environ. Sci. 6, 2706–2713 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Hinnemann, B. et al. Biomimetic hydrogen evolution? MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Lauritsen, J. V. et al. Size-dependent structure of MoS2 nanocrystals. Nature Nanotech. 2, 53–58 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Lassalle-Kaiser, B. et al. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 137, 314–321 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Bélanger, D., Laperriére, G. & Marsan, B. The electrodeposition of amorphous molybdenum sulfide. J. Electroanal. Chem. 347, 165–183 (1993).

    Article  Google Scholar 

  27. 27

    Zhang, X. et al. Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8, 862–868 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Müller, A., Wittneben, V., Krickemeyer, E., Bögge, H. & Lemke, M. Studies on the triangular cluster [Mo3S13]2−: electronic structure (Xα calculations, XPS), crystal structure of (Ph4As)2[Mo3S13]. 2CH3CN and a refinement of the crystal structure of (NH4)2[Mo3S13] H2O. Z. Anorg. Allg. Chem. 605, 175–188 (1991).

    Article  Google Scholar 

  29. 29

    Muller, A., Fedin, V., Hegetschweiler, K. & Amrein, W. Characterization of amorphous substances by studying isotopically labelled compounds with FAB-MS: evidence for extrusion of triangular Mo3 clusters from a mixture of 92MoS3 and 100MoS3 by reaction with OH. J. Chem. Soc. Chem. Commun. 1795–1796 (1992).

  30. 30

    Weber, T., Muijsers, J. C., van Wolput, J. H. M. C., Verhagen, C. P. J. & Niemantsverdriet, J. W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 100, 14144–14150 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Benoist, L. et al. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films 258, 110–114 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Chiam, S. Y. et al. Investigating the stability of defects in MoO3 and its role in organic solar cells. Sol. Energy Mater. Sol. Cells 99, 197–203 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Okamura, T.-A., Tatsumi, M., Omi, Y., Yamamoto, H. & Onitsuka, K. Selective and effective stabilization of MoV I = O bonds by NH S hydrogen bonds via trans influence. Inorg. Chem. 51, 11688–11697 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Dessapt, R. et al. Novel Mo(V)-dithiolene compounds: characterization of nonsymmetric dithiolene complexes by electrospray ionization mass spectrometry. Inorg. Chem. 42, 6425–6431 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Sugimoto, H. et al. Oxo-sulfido- and oxo-selenido-molybdenum(V I) complexes possessing a dithiolene ligand related to the active sites of hydroxylases of molybdoenzymes: low temperature preparation and characterisation. Chem. Commun. 49, 4358–4360 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Busetto, L., Vaccari, A. & Martini, G. Electron spin resonance of paramagnetic species as a tool for studying the thermal decomposition of molybdenum trisulfide. J. Phys. Chem. 85, 1927–1930 (1981).

    CAS  Article  Google Scholar 

  37. 37

    Vrubel, H. & Hu, X. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 3, 2002–2011 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Shibahara, T. et al. Syntheses and electrochemistry of incomplete cubane-type clusters with M3S4 cores (M = Mo, W). X-ray structures of [W3S4(H2O)9](CH3C6H4SO3)4.9H2O, Na2[W3S4(Hnta)3].5H2O, and (bpyH)5[W3S4(NCS)9].3H2O. Inorg. Chem. 31, 640–647 (1992).

    CAS  Article  Google Scholar 

  39. 39

    Weber, T., Muijsers, J. C. & Niemantsverdriet, J. W. Structure of amorphous MoS3 . J. Phys. Chem. 99, 9194–9200 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Huang, Y., Nielsen, R. J., Goddard, W. A. & Soriaga, M. P. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2 . J. Am. Chem. Soc. 137, 6692–6698 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Mater. 15, 48–53 (2016).

    CAS  Article  Google Scholar 

  42. 42

    Gibney, E. The super materials that could trump graphene. Nature 522, 274–276 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Kornienko, N. et al. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 7448–7455 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Caban-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nature Mater. 14, 1245–1251 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Hu, X., Zhang, W., Liu, X., Mei, Y. & Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Zaharieva, I. et al. Synthetic manganese-calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurally. Energy Environ. Sci. 4, 2400–2408 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Huynh, M., Bediako, D. K. & Nocera, D. G. A functionally stable manganese oxide oxygen evolution catalyst in acid. J. Am. Chem. Soc. 136, 6002–6010 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Kanan, M. W., Surendranath, Y. & Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109–114 (2009).

    CAS  Article  Google Scholar 

  49. 49

    Shevchenko, D., Anderlund, M. F., Thapper, A. & Styring, S. Photochemical water oxidation with visible light using a cobalt containing catalyst. Energy Environ. Sci. 4, 1284–1287 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Hutchings, G. S. et al. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts. J. Am. Chem. Soc. 137, 4223–4229 (2015).

    CAS  Article  Google Scholar 

Download references


P.D.T. and J.B. acknowledge the Energy Research Institute @ Nanyang Technological University (ERI@N) and the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) CREATE for financial and facilities supports. P.D.T. acknowledges University of Science and Technology of Hanoi for startup funding support (project USTH PECH2). Q.D.T. and I.H. acknowledge the Japan Society for Promotion of Science for financial support (Grant No. P13070). This work was supported by the French National Research Agency (Labex program, ARCANE, ANR-11-LABX-0003-01) and the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n.306398. J. Pérard is gratefully acknowledged for his help during ICP-AES measurements.

Author information




P.D.T. and V.A. designed research and performed material synthesis and electrochemical studies. T.V.T. performed resonance Raman analysis. Q.D.T., K.N., Y.S. and I.H. performed and analysed STEM studies. S.Y.C. and R.Y. performed XPS studies. S.T. and V.A. performed and analysed EPR studies. M.O. performed DFT calculations. P.D.T., V.A. and J.B. wrote the paper.

Corresponding authors

Correspondence to Phong D. Tran or Vincent Artero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2173 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, P., Tran, T., Orio, M. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nature Mater 15, 640–646 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing