Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge transport and localization in atomically coherent quantum dot solids


Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural characterization of a nanocrystal superlattice.
Figure 2: Charge transport measurement by field-effect transistor.
Figure 3: Hopping behaviour of electrons and holes modulated by gate voltage.
Figure 4: Extent of delocalization in a disordered superlattice.
Figure 5: Complete delocalization in a quantum dot solid.


  1. Kalesaki, E., Evers, W. H., Allan, G., Vanmaekelbergh, D. & Delerue, C. Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two. Phys. Rev. B 88, 115431 (2013).

    Article  Google Scholar 

  2. Butler, M. R., Movaghar, B., Marks, T. J. & Ratner, M. A. Electron pairing in designer materials: a novel strategy for a negative effective Hubbard U. Nano Lett. 15, 1597–1602 (2015).

    Article  CAS  Google Scholar 

  3. Kalesaki, E. et al. Dirac cones, topological edge states, and nontrivial flat bands in two-dimensional semiconductors with a honeycomb nanogeometry. Phys. Rev. X 4, 011010 (2014).

    Google Scholar 

  4. Lazarenkova, O. L. & Balandin, A. A. Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509–5515 (2001).

    Article  CAS  Google Scholar 

  5. Yang, J. & Wise, F. W. Effects of disorder on electronic properties of nanocrystal assemblies. J. Phys. Chem. C 119, 3338–3347 (2015).

    Article  CAS  Google Scholar 

  6. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    Article  CAS  Google Scholar 

  7. Ocier, C. R., Whitham, K., Hanrath, T. & Robinson, R. D. Chalcogenidometallate clusters as surface ligands for PbSe nanocrystal field-effect transistors. J. Phys. Chem. C 118, 3377–3385 (2014).

    Article  CAS  Google Scholar 

  8. Oh, S. J. et al. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 14, 1559–1566 (2014).

    Article  CAS  Google Scholar 

  9. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  CAS  Google Scholar 

  10. Baumgardner, W. J., Whitham, K. & Hanrath, T. Confined-but-connected quantum solids via controlled ligand displacement. Nano Lett. 13, 3225–3231 (2013).

    Article  CAS  Google Scholar 

  11. Evers, W. H. et al. Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. Nano Lett. 13, 2317–2323 (2013).

    Article  CAS  Google Scholar 

  12. Sandeep, C. S. S. et al. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. ACS Nano 8, 11499–11511 (2014).

    Article  CAS  Google Scholar 

  13. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nature Nanotech. 10, 1013–1026 (2015).

    Article  CAS  Google Scholar 

  14. Whitham, K. & Hanrath, T. Surface chemistry and charge transport of epitaxially connected PbSe nanocrystals. MRS Spring Ann. Meeting U2.02 (2015);

  15. Wise, F. W. Properties of atomically-coherent PbSe nanocrystal superlattices. MRS Spring Ann. Meeting U5.04 (2015);

  16. Evers, W. H. et al. High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds. Nature Commun. 6, 8195 (2015).

    Article  CAS  Google Scholar 

  17. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  18. Dong, A., Jiao, Y. & Milliron, D. J. Electronically coupled nanocrystal superlattice films by in situ ligand exchange at the liquid-air interface. ACS Nano 7, 10978–10984 (2013).

    Article  CAS  Google Scholar 

  19. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    Article  CAS  Google Scholar 

  20. Kitada, S., Kikuchi, E., Ohno, A., Aramaki, S. & Maenosono, S. Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells. Solid State Commun. 149, 1853–1855 (2009).

    Article  CAS  Google Scholar 

  21. Murphy, J. E., Beard, M. C. & Nozik, A. J. Time-resolved photoconductivity of PbSe nanocrystal arrays. J. Phys. Chem. B 110, 25455–25461 (2006).

    Article  CAS  Google Scholar 

  22. Vogel, W. & Hosemann, R. Evaluation of paracrystalline distortions from line broadening. Acta Crystallogr. A 26, 272–277 (1970).

    Article  CAS  Google Scholar 

  23. Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

    Article  CAS  Google Scholar 

  24. Kim, D., Kim, D.-H., Lee, J.-H. & Grossman, J. C. Impact of stoichiometry on the electronic structure of PbS quantum dots. Phys. Rev. Lett. 110, 196802 (2013).

    Article  Google Scholar 

  25. Oh, S. J. et al. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. ACS Nano 7, 2413–2421 (2013).

    Article  CAS  Google Scholar 

  26. Voznyy, O. et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448–8455 (2012).

    Article  CAS  Google Scholar 

  27. Dai, Q. et al. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure. Langmuir 25, 12320–12324 (2009).

    Article  CAS  Google Scholar 

  28. Law, M. et al. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. J. Am. Chem. Soc. 130, 5974–5985 (2008).

    Article  CAS  Google Scholar 

  29. Leschkies, K. S., Kang, M. S., Aydil, E. S. & Norris, D. J. Influence of atmospheric gases on the electrical properties of PbSe quantum-dot films. J. Phys. Chem. C 114, 9988–9996 (2010).

    Article  CAS  Google Scholar 

  30. Sykora, M. et al. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. ACS Nano 4, 2021–2034 (2010).

    Article  CAS  Google Scholar 

  31. Guyot-Sionnest, P. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3, 1169–1175 (2012).

    Article  CAS  Google Scholar 

  32. Shklovski, B. I. & Efros, A. L. Percolation theory and conductivity of strongly inhomogeneous media. Sov. Phys. Usp. 18, 845–862 (1975).

    Article  Google Scholar 

  33. Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    Article  CAS  Google Scholar 

  34. Sandeep, C. S. S. et al. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films. Nature Commun. 4, 2360 (2013).

    Article  Google Scholar 

  35. Liu, Y. et al. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2/Vs. Nano Lett. 13, 1578–1587 (2013).

    Article  CAS  Google Scholar 

  36. Cademartiri, L. et al. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 110, 671–673 (2006).

    Article  CAS  Google Scholar 

  37. Hendricks, M. P., Campos, M. P., Cleveland, G. T., Jen-LaPlante, I. & Owen, J. S. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348, 1226–1230 (2015).

    Article  CAS  Google Scholar 

  38. Yu, W. W., Falkner, J. C., Shih, B. S. & Colvin, V. L. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004).

    Article  CAS  Google Scholar 

  39. Weidman, M. C., Yager, K. G. & Tisdale, W. A. Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange. Chem. Mater. 27, 474–482 (2014).

    Article  Google Scholar 

Download references


This research was supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1120296). K.W. and J.Y. were supported by the Basic Energy Sciences Division of the Department of Energy through Grant DE-SC0006647 ‘Charge Transfer Across the Boundary of Photon-Harvesting Nanocrystals’. B.H.S. was supported by the NSF IGERT grant DGE-0903653 and NSF GRFP grant DGE-1144153. This work was based on research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208. Charge transport measurements were performed in a facility supported by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). The authors wish to thank CHESS staff scientist Detlef Smilgies for assistance with X-ray scattering experiments.

Author information

Authors and Affiliations



K.W. prepared samples for electron microscopy and X-ray scattering, fabricated FET devices, performed electrical transport and X-ray scattering measurements, acquired bright-field TEM images and analysed the electron micrographs, X-ray data and electrical transport data. J.Y. performed calculations of electronic structure and localization length. B.H.S. acquired and analysed STEM micrographs. All authors contributed to the interpretation of results and preparation of the manuscript.

Corresponding author

Correspondence to Tobias Hanrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3215 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whitham, K., Yang, J., Savitzky, B. et al. Charge transport and localization in atomically coherent quantum dot solids. Nature Mater 15, 557–563 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing