Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling between diffusion and orientation of pentacene molecules on an organic surface


The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials1, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures2. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface3. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement principle of helium-3 spin-echo (HeSE).
Figure 2: Dependence of dephasing rate, α, on azimuthal direction and momentum transfer, ΔK.
Figure 3: Simulations reveal the elementary processes that combine to an apparent long jump.


  1. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  2. Jardine, A. P., Hedgeland, H., Alexandrowicz, G., Allison, W. & Ellis, J. Helium-3 spin-echo: principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323–379 (2009).

    Article  CAS  Google Scholar 

  3. Söhnchen, S., Lukas, S. & Witte, G. Epitaxial growth of pentacene films on Cu(110). J. Chem. Phys. 121, 525–534 (2004).

    Article  Google Scholar 

  4. Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).

    Article  CAS  Google Scholar 

  5. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  6. O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  Google Scholar 

  7. Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  8. Grimsdale, A. C. & Müllen, K. The chemistry of organic nanomaterials. Angew. Chem. Int. Ed. 44, 5592–5629 (2005).

    Article  CAS  Google Scholar 

  9. Otero, R. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nature Mater. 3, 779–782 (2004).

    Article  CAS  Google Scholar 

  10. Bartels, L., Wang, F., Möller, D., Knoesel, E. & Heinz, T. F. Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305, 648–651 (2004).

    Article  CAS  Google Scholar 

  11. Wong, K. L. et al. A molecule carrier. Science 315, 1391–1393 (2007).

    Article  CAS  Google Scholar 

  12. Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002).

    Article  CAS  Google Scholar 

  13. Kim, Y., Motobayashi, K., Frederiksen, T., Ueba, H. & Kawai, M. Action spectroscopy for single-molecule reactions—experiments and theory. Prog. Surf. Sci. 90, 85–143 (2015).

    Article  CAS  Google Scholar 

  14. Ruiz, R. et al. Pentacene thin film growth. Chem. Mater. 16, 4497–4508 (2004).

    Article  CAS  Google Scholar 

  15. Hlawacek, G. et al. Characterization of step-edge barriers in organic thin-film growth. Science 321, 108–111 (2008).

    Article  CAS  Google Scholar 

  16. Fouquet, P. et al. Measurements of molecule diffusion on surfaces using neutron and helium spin echo. Physica B 385–386, 269–271 (2006).

    Article  Google Scholar 

  17. Poelsema, B. & Comsa, G. Scattering of Thermal Energy Atoms (Springer Tracts in Modern Physics 115, Springer, 1989).

    Book  Google Scholar 

  18. Van Hove, L. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954).

    Article  CAS  Google Scholar 

  19. Chudley, C. T. & Elliott, R. J. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353–361 (1961).

    Article  Google Scholar 

  20. Ellis, J. & Toennies, J. P. Observation of jump diffusion of isolated sodium atoms on a Cu(001) surface by helium atom scattering. Phys. Rev. Lett. 70, 2118–2121 (1993).

    Article  CAS  Google Scholar 

  21. Hedgeland, H. et al. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nature Phys. 5, 561–564 (2009).

    Article  CAS  Google Scholar 

  22. de Wijn, A. S. Internal degrees of freedom and transport of benzene on graphite. Phys. Rev. E 84, 011610 (2011).

    Article  Google Scholar 

  23. Lechner, B. A. J. et al. Atomic scale friction of molecular adsorbates during diffusion. J. Chem. Phys. 138, 194710 (2013).

    Article  CAS  Google Scholar 

  24. Lechner, B. A. J. et al. Jumping, rotating, and flapping: the atomic-scale motion of thiophene on Cu(111). J. Phys. Chem. Lett. 4, 1953–1958 (2013).

    Article  CAS  Google Scholar 

  25. Clancy, P. Application of molecular simulation techniques to the study of factors affecting the thin-film morphology of small-molecule organic semiconductors. Chem. Mater. 23, 522–543 (2011).

    Article  CAS  Google Scholar 

  26. Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

    Article  CAS  Google Scholar 

  27. Cantrell, R. A., James, C. & Clancy, P. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers. Langmuir 27, 9944–9954 (2011).

    Article  CAS  Google Scholar 

  28. Tuddenham, F. E. et al. Lineshapes in quasi-elastic scattering from species hopping between non-equivalent surface sites. Surf. Sci. 604, 1459–1475 (2010).

    Article  CAS  Google Scholar 

  29. Farias, D. & Rieder, K.-H. Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998).

    Article  CAS  Google Scholar 

  30. Ponder, J. W. TINKER—Software Tools for Molecular Design (2015);

Download references


The authors acknowledge financial support from the EPSRC (EP/E0049621, B.A.J.L., D.J.W., D.M.C., A.P.J., J.E., W.A.), the Austrian Academy of Sciences (B.A.J.L.), the Royal Society (A.P.J.), the E.U. ERASMUS programme (A.M.) and the Deutsche Forschungsgemeinschaft (GRK 1782, P.R.). Underlying data are available at the University of Cambridge Research data repository (

Author information

Authors and Affiliations



G.W. initiated the project. G.W., W.A. and A.P.J. planned the experiment. A.M., B.A.J.L., D.M.C. and D.J.W. performed the HeSE measurements. A.M., P.R., B.A.J.L. and J.E. analysed the data. P.R. ran the simulations. P.R. and B.E. developed the model. P.R., G.W., B.A.J.L. and B.E. wrote the manuscript.

Corresponding author

Correspondence to Gregor Witte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3182 kb)

Supplementary Information

Supplementary movie 1 (MOV 8679 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotter, P., Lechner, B., Morherr, A. et al. Coupling between diffusion and orientation of pentacene molecules on an organic surface. Nature Mater 15, 397–400 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing