Coupling between diffusion and orientation of pentacene molecules on an organic surface

Abstract

The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials1, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures2. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface3. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Measurement principle of helium-3 spin-echo (HeSE).
Figure 2: Dependence of dephasing rate, α, on azimuthal direction and momentum transfer, ΔK.
Figure 3: Simulations reveal the elementary processes that combine to an apparent long jump.

References

  1. 1

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Jardine, A. P., Hedgeland, H., Alexandrowicz, G., Allison, W. & Ellis, J. Helium-3 spin-echo: principles and application to dynamics at surfaces. Prog. Surf. Sci. 84, 323–379 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Söhnchen, S., Lukas, S. & Witte, G. Epitaxial growth of pentacene films on Cu(110). J. Chem. Phys. 121, 525–534 (2004).

    Article  Google Scholar 

  4. 4

    Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    CAS  Article  Google Scholar 

  6. 6

    O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  Google Scholar 

  7. 7

    Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Grimsdale, A. C. & Müllen, K. The chemistry of organic nanomaterials. Angew. Chem. Int. Ed. 44, 5592–5629 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Otero, R. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nature Mater. 3, 779–782 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Bartels, L., Wang, F., Möller, D., Knoesel, E. & Heinz, T. F. Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305, 648–651 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Wong, K. L. et al. A molecule carrier. Science 315, 1391–1393 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Komeda, T., Kim, Y., Kawai, M., Persson, B. N. J. & Ueba, H. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Kim, Y., Motobayashi, K., Frederiksen, T., Ueba, H. & Kawai, M. Action spectroscopy for single-molecule reactions—experiments and theory. Prog. Surf. Sci. 90, 85–143 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Ruiz, R. et al. Pentacene thin film growth. Chem. Mater. 16, 4497–4508 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Hlawacek, G. et al. Characterization of step-edge barriers in organic thin-film growth. Science 321, 108–111 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Fouquet, P. et al. Measurements of molecule diffusion on surfaces using neutron and helium spin echo. Physica B 385–386, 269–271 (2006).

    Article  Google Scholar 

  17. 17

    Poelsema, B. & Comsa, G. Scattering of Thermal Energy Atoms (Springer Tracts in Modern Physics 115, Springer, 1989).

    Google Scholar 

  18. 18

    Van Hove, L. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954).

    CAS  Article  Google Scholar 

  19. 19

    Chudley, C. T. & Elliott, R. J. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77, 353–361 (1961).

    Article  Google Scholar 

  20. 20

    Ellis, J. & Toennies, J. P. Observation of jump diffusion of isolated sodium atoms on a Cu(001) surface by helium atom scattering. Phys. Rev. Lett. 70, 2118–2121 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Hedgeland, H. et al. Measurement of single-molecule frictional dissipation in a prototypical nanoscale system. Nature Phys. 5, 561–564 (2009).

    CAS  Article  Google Scholar 

  22. 22

    de Wijn, A. S. Internal degrees of freedom and transport of benzene on graphite. Phys. Rev. E 84, 011610 (2011).

    Article  Google Scholar 

  23. 23

    Lechner, B. A. J. et al. Atomic scale friction of molecular adsorbates during diffusion. J. Chem. Phys. 138, 194710 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Lechner, B. A. J. et al. Jumping, rotating, and flapping: the atomic-scale motion of thiophene on Cu(111). J. Phys. Chem. Lett. 4, 1953–1958 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Clancy, P. Application of molecular simulation techniques to the study of factors affecting the thin-film morphology of small-molecule organic semiconductors. Chem. Mater. 23, 522–543 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Cantrell, R. A., James, C. & Clancy, P. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers. Langmuir 27, 9944–9954 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Tuddenham, F. E. et al. Lineshapes in quasi-elastic scattering from species hopping between non-equivalent surface sites. Surf. Sci. 604, 1459–1475 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Farias, D. & Rieder, K.-H. Atomic beam diffraction from solid surfaces. Rep. Prog. Phys. 61, 1575–1664 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Ponder, J. W. TINKER—Software Tools for Molecular Design (2015); http://dasher.wustl.edu/tinker

Download references

Acknowledgements

The authors acknowledge financial support from the EPSRC (EP/E0049621, B.A.J.L., D.J.W., D.M.C., A.P.J., J.E., W.A.), the Austrian Academy of Sciences (B.A.J.L.), the Royal Society (A.P.J.), the E.U. ERASMUS programme (A.M.) and the Deutsche Forschungsgemeinschaft (GRK 1782, P.R.). Underlying data are available at the University of Cambridge Research data repository (https://www.repository.cam.ac.uk).

Author information

Affiliations

Authors

Contributions

G.W. initiated the project. G.W., W.A. and A.P.J. planned the experiment. A.M., B.A.J.L., D.M.C. and D.J.W. performed the HeSE measurements. A.M., P.R., B.A.J.L. and J.E. analysed the data. P.R. ran the simulations. P.R. and B.E. developed the model. P.R., G.W., B.A.J.L. and B.E. wrote the manuscript.

Corresponding author

Correspondence to Gregor Witte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3182 kb)

Supplementary Information

Supplementary movie 1 (MOV 8679 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rotter, P., Lechner, B., Morherr, A. et al. Coupling between diffusion and orientation of pentacene molecules on an organic surface. Nature Mater 15, 397–400 (2016). https://doi.org/10.1038/nmat4575

Download citation

Further reading