Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots


Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Locomotion based on travelling-wave features, from nature to technology.
Figure 2: Deformation of microrobots made of soft active materials wirelessly controlled by dynamic light fields.
Figure 3: Force- and torque-free swimming of a cylindrical microrobot driven by light-controlled travelling-wave deformations.
Figure 4: In-plane controlled locomotion of disc-shaped microrobots.


  1. 1

    Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Sitti, M. et al. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103, 205–224 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Google Scholar 

  4. 4

    Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 96601 (2009).

    Article  Google Scholar 

  5. 5

    Elgeti, J. & Gompper, G. Emergence of metachronal waves in cilia arrays. Proc. Natl Acad. Sci. USA 110, 4470–4475 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Choi, H. et al. Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater. Struct. 18, 115017 (2009).

    Article  Google Scholar 

  7. 7

    Kummer, M. P. et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).

    Article  Google Scholar 

  8. 8

    Fischer, P. & Ghosh, A. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3, 557–563 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Palagi, S., Mazzolai, B., Innocenti, C., Sangregorio, C. & Beccai, L. How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids? Appl. Phys. Lett. 102, 124102–124105 (2013).

    Article  Google Scholar 

  10. 10

    Shields, A. R. et al. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. USA 107, 15670–15675 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I. & Rus, D. An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15, 1–15 (2006).

    Article  Google Scholar 

  12. 12

    Hu, W., Ishii, K. S. & Ohta, A. T. Micro-assembly using optically controlled bubble microrobots. Appl. Phys. Lett. 99, 94103 (2011).

    Article  Google Scholar 

  13. 13

    van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R. & Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104, 174101 (2014).

    Article  Google Scholar 

  15. 15

    Sánchez, S., Soler, L. & Katuri, J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 54, 1414–1444 (2015).

    Article  Google Scholar 

  16. 16

    Schamel, D. et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8, 8794–8801 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Iacovacci, V. et al. Untethered magnetic millirobot for targeted drug delivery. Biomed. Microdevices 17, 1–12 (2015).

    Article  Google Scholar 

  18. 18

    Servant, A., Qiu, F., Mazza, M., Kostarelos, K. & Nelson, B. J. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Snezhko, A., Belkin, M., Aranson, I. S. & Kwok, W. K. Self-assembled magnetic surface swimmers. Phys. Rev. Lett. 102, 118103 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Snezhko, A. & Aranson, I. S. Magnetic manipulation of self-assembled colloidal asters. Nature Mater. 10, 698–703 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Qiu, T. et al. Swimming by reciprocal motion at low Reynolds number. Nature Commun. 5, 5119 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2013).

    Article  Google Scholar 

  24. 24

    Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Laschi, C. & Cianchetti, M. Soft robotics: new perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 2, 3 (2014).

    Article  Google Scholar 

  26. 26

    Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Bartlett, N. W. et al. A 3D-printed, functionally graded soft robot powered by combustion. Science 349, 161–165 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Hauser, A. W., Evans, A. A., Na, J.-H. & Hayward, R. C. Photothermally reprogrammable buckling of nanocomposite gel sheets. Angew. Chem. Int. Ed. 54, 5434–5437 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Tabatabaei, S. N., Lapointe, J. & Martel, S. Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv. Robot. 25, 1049–1067 (2011).

    Article  Google Scholar 

  31. 31

    Fusco, S. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26, 952–957 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Zeng, H. et al. Light-fueled microscopic walkers. Adv. Mater. 27, 3883–3887 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers Vol. 120 (Oxford Univ. Press, 2003).

    Google Scholar 

  34. 34

    Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Fleischmann, E.-K. et al. One-piece micropumps from liquid crystalline core-shell particles. Nature Commun. 3, 1178 (2012).

    Article  Google Scholar 

  36. 36

    Fleischmann, E.-K., Forst, F. R. & Zentel, R. Liquid-crystalline elastomer fibers prepared in a microfluidic device. Macromol. Chem. Phys. 215, 1004–1011 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Wang, L. et al. A bioinspired swimming and walking hydrogel driven by light-controlled local density. Adv. Sci. 2, 1500084 (2015).

    Article  Google Scholar 

  39. 39

    Uchida, E., Azumi, R. & Norikane, Y. Light-induced crawling of crystals on a glass surface. Nature Commun. 6, 7310 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Khatavkar, V. V., Anderson, P. D., den Toonder, J. M. J. & Meijer, H. E. H. Active micromixer based on artificial cilia. Phys. Fluids 19, 083605 (2007).

    Article  Google Scholar 

  41. 41

    Taylor, G. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209, 447–461 (1951).

    Article  Google Scholar 

  42. 42

    Taylor, G. The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. Lond. A 211, 225–239 (1952).

    Article  Google Scholar 

  43. 43

    Knight-Jones, E. W. Relations between metachronism and the direction of ciliary beat in Metazoa. J. Cell Sci. s3-95, 503–521 (1954).

    Google Scholar 

  44. 44

    Childress, S. Mechanics of Swimming and Flying Vol. 2 (Cambridge Univ. Press, 1981).

    Google Scholar 

  45. 45

    Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

    Article  Google Scholar 

  46. 46

    Zeng, H. et al. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures. Adv. Mater. 26, 2319–2322 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Hu, W., Fan, Q. & Ohta, A. Interactive actuation of multiple opto-thermocapillary flow-addressed bubble microrobots. Robot. Biomimetics 1, 14 (2014).

    CAS  Article  Google Scholar 

  48. 48

    White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Mater. 14, 1087–1098 (2015).

    CAS  Article  Google Scholar 

  49. 49

    Berman, R. S., Kenneth, O., Sznitman, J. & Leshansky, A. M. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans. New J. Phys. 15, 075022 (2013).

    Article  Google Scholar 

Download references


This work was in part supported by the European Research Council under the ERC Grant agreements 278213 and 291349, and the DFG as part of the project SPP 1726 (microswimmers, FI 1966/1-1). S.P. acknowledges support by the Max Planck ETH Center for Learning Systems. We thank A. Posada for help with the movies and figures.

Author information




S.P., A.G.M. and P.F. proposed the experiment; S.P., A.G.M. and K.M. built the structured light set-up; H.Z., C.P., D.M. and D.S.W. synthesized the LCE and formed the cylindrical samples; S.P. performed the experiments and numerical simulations; S.P. and T.Q. fabricated the disc by photolithography; S.P., A.G.M., A.S.-C., N.K. and F.G. characterized the LCE material by SAXS; S.Y.R. and E.L. developed the analytical theory model; S.P., A.G.M. and P.F. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Peer Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2113 kb)

Supplementary Information

Supplementary movie 1 (MOV 4674 kb)

Supplementary Information

Supplementary movie 2 (MOV 12000 kb)

Supplementary Information

Supplementary movie 2 (MOV 4172 kb)

Supplementary Information

Supplementary movie 3 (MOV 3063 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palagi, S., Mark, A., Reigh, S. et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nature Mater 15, 647–653 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing