Approaching theoretical strength in glassy carbon nanolattices


The strength of lightweight mechanical metamaterials, which aim to exploit material-strengthening size effects by their microscale lattice structure, has been limited by the resolution of three-dimensional lithography technologies and their restriction to mainly polymer resins. Here, we demonstrate that pyrolysis of polymeric microlattices can overcome these limitations and create ultra-strong glassy carbon nanolattices with single struts shorter than 1 μm and diameters as small as 200 nm. They represent the smallest lattice structures yet produced—achieved by an 80% shrinkage of the polymer during pyrolysis—and exhibit material strengths of up to 3 GPa, corresponding approximately to the theoretical strength of glassy carbon. The strength-to-density ratios of the nanolattices are six times higher than those of reported microlattices. With a honeycomb topology, effective strengths of 1.2 GPa at 0.6 g cm−3 are achieved. Diamond is the only bulk material with a notably higher strength-to-density ratio.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Pyrolysis of 3D-printed polymeric microlattices creates glassy carbon nanolattices.
Figure 2: Compression experiments of pyrolysed lattices with tetrahedral unit cells.
Figure 3: Compression experiment of a pyrolysed honeycomb structure.
Figure 4: Compressive strength–density Ashby map.


  1. 1

    Christensen, J., Kadic, M., Wegener, M. & Kraft, O. Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Lee, J. H., Singer, J. P. & Thomas, E. L. Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Salari-Sharif, L., Schaedler, T. A. & Valdevit, L. Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res. 29, 1755–1770 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Bückmann, T. et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012).

    Article  Google Scholar 

  5. 5

    Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. Lond. A 466, 2495–2516 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Jacobsen, A. J., Barvosa-Carter, W. & Nutt, S. Micro-scale Truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19, 3892–3896 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).

    Article  Google Scholar 

  8. 8

    von Freymann, G. et al. Three-dimensional nanostructures for photonics. Adv. Funct. Mater. 20, 1038–1052 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Arpin, K. A. et al. Multidimensional architectures for functional optical devices. Adv. Mater. 22, 1084–1101 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Jang, D., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater. 12, 893–898 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl Acad. Sci. USA 111, 2453–2458 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Gu, X. W. & Greer, J. R. Ultra-strong architected Cu meso-lattices. Extreme Mech. Lett. 2, 7–14 (2015).

    Article  Google Scholar 

  18. 18

    George, T., Deshpande, V. S. & Wadley, H. N. G. Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites A 47, 31–40 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Dong, L., Deshpande, V. & Wadley, H. Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int. J. Solids Struct. 60, 107–124 (2015).

    Article  Google Scholar 

  20. 20

    Weiner, S. & Wagner, H. D. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Yilmaz, E. D., Bechtle, S., Özcoban, H., Schreyer, A. & Schneider, G. A. Fracture behavior of hydroxyapatite nanofibers in dental enamel under micropillar compression. Scr. Mater. 68, 404–407 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Meyers, M. A., Lin, A. Y.-M., Chen, P.-Y. & Muyco, J. Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1, 76–85 (2008).

    Article  Google Scholar 

  23. 23

    Gao, H., Ji, B., Jaeger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lesson from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Zhu, T., Li, J., Ogata, S. & Yip, S. Mechanics of ultra-strength materials. MRS Bull. 34, 167–172 (2009).

    CAS  Article  Google Scholar 

  25. 25

    George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Bauer, J. et al. Push-to-pull tensile testing of ultra-strong nanoscale ceramic-polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105–112 (2015).

    Article  Google Scholar 

  28. 28

    Schueller, O. & Brittain, S. Fabrication and characterization of glassy carbon MEMS. Chem. Mater. 4756, 1399–1406 (1997).

    Article  Google Scholar 

  29. 29

    Wang, C., Jia, G., Taherabadi, L. H. & Madou, M. J. A novel method for the fabrication of high-aspect ratio C-MEMS structures. J. Microelectromech. Syst. 14, 348–358 (2005).

    Article  Google Scholar 

  30. 30

    Lim, Y., Heo, J., Madou, M. & Shin, H. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform. Nanoscale Res. Lett. 8, 492 (2013).

    Article  Google Scholar 

  31. 31

    Burckel, D. B. et al. Lithographically defined porous carbon electrodes. Small 5, 2792–2796 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Lee, J. H., Wang, L. F., Boyce, M. C. & Thomas, E. L. Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 4392–4396 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Cowlard, F. C. & Lewis, J. C. Vitreous carbon—a new form of carbon. J. Mater. Sci. 2, 507–512 (1967).

    CAS  Article  Google Scholar 

  34. 34

    Harris, P. J. F. Fullerene-related structure of commercial glassy carbons. Phil. Mag. 84, 3159–3167 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Zhao, J. X., Bradt, R. C. & Walker, P. L. J. The fracture toughness of glassy carbons at elevated temperatures. Carbon N. Y. 23, 15–18 (1985).

    CAS  Article  Google Scholar 

  36. 36

    Mcaleavey, A., Coles, G., Edwards, R. L. & Sharpe, W. N. Mechanical properties of SU-8. MRS Proc. 546, 213–218 (1998).

    Article  Google Scholar 

  37. 37

    Jacobsen, A. J., Mahoney, S., Carter, W. B. & Nutt, S. Vitreous carbon micro-lattice structures. Carbon N. Y. 49, 1025–1032 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Shin, S. J., Kucheyev, S. O., Worsley, M. A. & Hamza, A. V. Mechanical deformation of carbon-nanotube-based aerogels. Carbon N. Y. 50, 5340–5342 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Deshpande, V. S. & Fleck, N. A. Collapse of truss core sandwich beams in 3-point bending. Int. J. Solids Struct. 38, 6275–6305 (2001).

    Article  Google Scholar 

  40. 40

    Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties Vol. 2, 2nd edn (Cambridge Univ. Press, 1999).

    Google Scholar 

  41. 41

    Wadley, H. N. G. Multifunctional periodic cellular metals. Phil. Trans. R. Soc. Lond. A 364, 31–68 (2005).

    Article  Google Scholar 

  42. 42

    Berdova, M. et al. Mechanical assessment of suspended ALD thin films by bulge and shaft-loading techniques. Acta Mater. 66, 370–377 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Liu, A. ASM Handbook Volume 19, Fatigue And Fracture 980–1000 (ASM International, 1996).

    Google Scholar 

  44. 44

    Bullock, R. E. & Kaae, J. L. Size effect on the strength of glassy carbon. J. Mater. Sci. 14, 920–930 (1979).

    CAS  Article  Google Scholar 

  45. 45

    Kawamura, K. & Jenkins, G. A new glassy carbon fibre. J. Mater. Sci. 5, 262–267 (1970).

    CAS  Article  Google Scholar 

  46. 46

    Manoharan, M. P., Lee, H., Rajagopalan, R., Foley, H. C. & Haque, M. A. Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14–19 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Yakobson, B. I. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (eds Dresselhaus, M. S., Dresselhaus, G. & Avouris, P.) 287–327 (Springer, 2001).

    Google Scholar 

  48. 48

    Singh, A., Jayaram, J., Madou, M. & Akbar, S. Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149, 78–83 (2002).

    Article  Google Scholar 

  49. 49

    Kim, H.-J., Joo, Y.-H., Lee, S.-M. & Kim, C. Characteristics of photoresist-derived carbon nanofibers for Li-ion full cell electrode. Trans. Electr. Electron. Mater. 15, 265–269 (2014).

    Article  Google Scholar 

  50. 50

    Groner, M. D., Fabreguette, F. H., Elam, J. W. & George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004).

    CAS  Article  Google Scholar 

Download references


The authors thank M. Madou for stimulating discussions introducing us to the concept of pyrolysis of resist structures. Financial support of this work by the Robert Bosch-Foundation is gratefully acknowledged.

Author information




J.B. and O.K. designed the research; J.B. designed structures; J.B. and A.S. manufactured samples; J.B., performed ex situ measurements; J.B. and R.S. performed in situ measurements; J.B. performed analytical and finite element calculations; J.B., O.K. and R.S. analysed data; J.B. wrote the paper.

Corresponding author

Correspondence to J. Bauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1238 kb)

Supplementary Information

Supplementary Movie 1 (MP4 21145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, J., Schroer, A., Schwaiger, R. et al. Approaching theoretical strength in glassy carbon nanolattices. Nature Mater 15, 438–443 (2016).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing