Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Anionic redox processes for electrochemical devices

Understanding and controlling anionic redox processes is pivotal for the design of new Li-ion battery and water-splitting materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Triggering the anionic redox process in a solid.
Figure 2: Anionic redox process for OER and LIB materials.
Figure 3: Electrocatalysts with low redox potential for HER.

References

  1. T. Ohzuku, Y. M. Chem. Lett. 7, 642–643 (2001).

    Article  Google Scholar 

  2. Thackeray, M. M. et al. J. Mater. Chem. 17, 3112 (2007).

    Article  CAS  Google Scholar 

  3. Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. J. Electrochem. Soc. 149, A778 (2002).

    Article  CAS  Google Scholar 

  4. Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Ha, N. & Hackney, S. A. J. Mater. Chem. 15, 2257 (2005).

    Article  CAS  Google Scholar 

  5. Sathiya, M. et al. Nature Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  6. Sathiya, M. et al. Nature Commun. 6, 6276 (2015).

    Article  CAS  Google Scholar 

  7. Tarascon, J. M. et al. J. Electrochem. Soc. 420, 410–420 (1999).

    Google Scholar 

  8. Rivadulla, F., Zhou, J.-S. & Goodenough, J. B. Phys. Rev. B 68, 075108 (2003).

    Article  CAS  Google Scholar 

  9. Foix, D., Mariyappan, S., McCalla, E., Tarascon, J.-M. & Gonbeau, D. J. Phys. Chem. C (in the press).

  10. McCalla, E. et al. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  11. Yabuuchi, N. et al. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  CAS  Google Scholar 

  12. Rozier, P. et al. Electrochem. Commun. 53, 29–32 (2015).

    Article  CAS  Google Scholar 

  13. Nørskov, J. K. et al. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  14. Man, I. C. et al. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  15. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  16. Suntivich, J. et al. Nature Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  17. Surendranath, Y., Kanan, M. W. & Nocera, D. G. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  Google Scholar 

  18. Mavros, M. G. et al. Inorg. Chem. 53, 6386–6397 (2014).

    Article  CAS  Google Scholar 

  19. De Faria, L. A., Boodts, J. F. C. & Trasatti, S. J. Appl. Electrochem. 26, 1195–1199 (1996).

    Article  CAS  Google Scholar 

  20. May, K. J. et al. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  CAS  Google Scholar 

  21. Risch, M. et al. J. Phys. Chem. C 117, 8628–8635 (2013).

    Article  CAS  Google Scholar 

  22. Grimaud, A. et al. Nature Commun. 4, 2439 (2013).

    Article  CAS  Google Scholar 

  23. Hong, W. T. et al. J. Phys. Chem. C 119, 2063–2072 (2015).

    Article  CAS  Google Scholar 

  24. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Energy Environ. Sci. 4, 3966–3970 (2011).

    Article  CAS  Google Scholar 

  25. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Nature Commun. 6, 6097 (2015).

    Article  CAS  Google Scholar 

  26. Goodenough, J. B. & Kim, Y. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  27. Rouxel, J. Chem. Eur. J. 2, 1053–1059 (1996).

    Article  CAS  Google Scholar 

  28. Blandeau, L., Ouvrard, G., Calage, Y., Brec, R. & Rouxel, J. J. Phys. C 4271, 4271–4281 (1987).

    Article  Google Scholar 

  29. Nücker, N., Fink, J., Fuggle, J., Durham, P. & Temmerman, W. Phys. Rev. B 37, 5158–5163 (1988).

    Article  Google Scholar 

  30. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. Energy Environ. Sci. http://dx.doi.org/10.1039/C5EE03048J (2015).

  31. Koga, H., Croguennec, L. & Me, M. J. Phys. Chem. C 118, 5700–5709 (2014).

    Article  CAS  Google Scholar 

  32. Sathiya, M. et al. Chem. Commun. 49, 11376–11378 (2013).

    Article  CAS  Google Scholar 

  33. McCalla, E. et al. J. Electrochem. Soc. 162, A1341–A1351 (2015).

    Article  CAS  Google Scholar 

  34. McCalla, E. et al. J. Am. Chem. Soc. 137, 4804–4814 (2015).

    Article  CAS  Google Scholar 

  35. Sathiya, M. et al. Nature Mater. 14, 230–238 (2015).

    Article  CAS  Google Scholar 

  36. Wattiaux, A. J. Electrochem. Soc. 134, 1714 (1987).

    Article  CAS  Google Scholar 

  37. Bockris, J. O. & Otagawa, T. J. Phys. Chem. 87, 2960–2971 (1983).

    Article  CAS  Google Scholar 

  38. Bockris, J. O. & Otagawa, T. J. Electrochem Soc. 131, 290–302 (1984).

    Article  CAS  Google Scholar 

  39. Grimaud, A. et al. J. Phys. Chem. C 117, 25926–25932 (2013).

    Article  CAS  Google Scholar 

  40. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  41. Hong, W. et al. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  42. Suntivich, J. et al. J. Phys. Chem. C 118, 1856–1863 (2014).

    Article  CAS  Google Scholar 

  43. Wohlfahrt-Mehrens, M. & Heitbaum, J. J. Electroanal. Chem. 237, 251–260 (1987).

    Article  CAS  Google Scholar 

  44. Surendranath, Y., Kanan, M. W. & Nocera, D. G. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  Google Scholar 

  45. Wang, H. et al. Nature Commun. 6, 7261 (2015).

    Article  CAS  Google Scholar 

  46. Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. Nature Commun. 5, 3949 (2014).

    Article  CAS  Google Scholar 

  47. Lee, S. W. et al. J. Am. Chem. Soc. 134, 16959–16962 (2012).

    Article  CAS  Google Scholar 

  48. Ebbinghaus, S. G., Erztoument, C. & Marozau, I. J. Solid State Chem. 180, 3393–3400 (2007).

    Article  CAS  Google Scholar 

  49. Götzfried, T., Reller, A. & Ebbinghaus, S. G. Inorg. Chem. 44, 6550–6557 (2005).

    Article  CAS  Google Scholar 

  50. Grasset, F., Dussarrat, C. & Darriet, J. J. Mater. Chem. 7, 1911–1915 (1997).

    Article  CAS  Google Scholar 

  51. Demourgues, A. et al. J. Solid State Chem. 105, 458–468 (1993).

    Article  CAS  Google Scholar 

  52. Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P. & Stevenson, K. J. Nature Mater. 13, 726–732 (2014).

    Article  CAS  Google Scholar 

  53. Hinnemann, B. et al. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  54. Voiry, D. et al. Nature Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  55. Jaramillo, T. F. et al. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  56. Popczun, E. J. et al. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  CAS  Google Scholar 

  57. Vrubel, H. & Hu, X. Angew. Chem. Int. Ed. 51, 12703–12706 (2012).

    Article  CAS  Google Scholar 

  58. Chen, W. et al. Angew. Chem. Int. Ed. 51, 6131–6135 (2012).

    Article  CAS  Google Scholar 

  59. Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. F. Electrochem. Commun. 4, 516–520 (2002).

    Article  CAS  Google Scholar 

  60. Bichat, M.-P. et al. Chem. Mater. 16, 1002–1013 (2004).

    Article  CAS  Google Scholar 

  61. Trześniewski, B. J. et al. J. Am. Chem. Soc. 137, 15112–15121 (2015).

    Article  CAS  Google Scholar 

  62. Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Electrochem. Commun. 9, 1969–1974 (2007).

    Article  CAS  Google Scholar 

  63. Diaz-Morales, O., Calle-Vallejo, F., de Munck, C. & Koper, M. T. M. Chem. Sci. 4, 2334 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gauthier, K. A. Stoerzinger and L. Giordano at MIT, M. Saubanère and M.-L. Doublet at the Institut Charles Gerhardt in Montpellier, and E. McCalla at Collège de France for discussion. J.-M.T. and A.G. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Tarascon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grimaud, A., Hong, W., Shao-Horn, Y. et al. Anionic redox processes for electrochemical devices. Nature Mater 15, 121–126 (2016). https://doi.org/10.1038/nmat4551

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing