Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange

Abstract

Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing1 followed by fluid–fluid phase separation, such as coacervation2,3,4,5. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water–DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (25 s) and robust underwater contact adhesion (Wad ≥ 2 J m−2) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Materials inspiration and underwater adhesion.
Figure 2: Mechanism and materials characterization.
Figure 3: Effect of setting time in water on solvent exchange and adhesion.
Figure 4: Underwater friction experiments of mica versus adhesive-coated glass performed using an SFA.

References

  1. 1

    Faul, C. F. J. & Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 15, 673–683 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Perry, S. L. et al. Chirality-selected phase behaviour in ionic polypeptide complexes. Nature Commun. 6, 6052 (2015).

    Article  Google Scholar 

  3. 3

    Tang, T. Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chem. 6, 527–533 (2014).

    Article  Google Scholar 

  4. 4

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Xu, L. M. et al. Self-assembly of ultralong polyion nanoladders facilitated by ionic recognition and molecular stiffness. J. Am. Chem. Soc. 136, 1942–1947 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Stewart, R. J., Ransom, T. C. & Hlady, V. Natural underwater adhesives. J. Polym. Sci. B 49, 757–771 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Sedo, J., Saiz-Poseu, J., Busque, F. & Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 25, 653–701 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Zhao, H., Sun, C. J., Stewart, R. J. & Waite, J. H. Cement proteins of the tube-building polychaete Phragmatopoma californica. J. Biol. Chem. 280, 42938–42944 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–342 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Shao, H. & Stewart, R. J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv. Mater. 22, 729–733 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Stewart, R. J., Weaver, J. C., Morse, D. E. & Waite, J. H. The tube cement of Phragmatopoma californica: a solid foam. J. Exp. Biol. 207, 4727–4734 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Stevens, M. J., Steren, R. E., Hlady, V. & Stewart, R. J. Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23, 5045–5049 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Tamarin, A., Lewis, P. & Askey, J. Structure and formation of byssus attachment plaque in mytilus. J. Morphol. 149, 199–221 (1976).

    CAS  Article  Google Scholar 

  15. 15

    Desmond, K., Zacchia, N. A., Waite, J. H. & Valentine, M. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Bungenberg de Jong, H. G. in Colloid Science Vol. II (ed. Kruyt, H. R.) 431–482 (Elsevier, 1949).

    Google Scholar 

  17. 17

    Hwang, D. S. et al. Viscosity and interfacial properties in a mussel-inspired adhesive coacervate. Soft Matter 6, 3232–3236 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Stewart, R. J., Wang, C. S. & Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 167, 85–93 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Rose, S. et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Ono, T., Sugimoto, T., Shinkai, S. & Sada, K. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nature Mater. 6, 429–433 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Yuan, J. Y., Mecerreyes, D. & Antonietti, M. Poly(ionic liquid)s: an update. Prog. Polym. Sci. 38, 1009–1036 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Poulsen, N. et al. Isolation and biochemical characterization of underwater adhesives from diatoms. Biofouling 30, 513–523 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Gibson, L. J. & Ashby, M. F. The mechanics of 3-dimensional cellular materials. Proc. R. Soc. Lond. A 382, 43–59 (1982).

    CAS  Article  Google Scholar 

  24. 24

    Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Wu, D. C. et al. Design and preparation of porous polymers. Chem. Rev. 112, 3959–4015 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Johnson, K. L., Kendall, K. & Roberts, A. D. Surface energy and contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971).

    CAS  Article  Google Scholar 

  27. 27

    Raviv, U. et al. Lubrication by charged polymers. Nature 425, 163–165 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Raviv, U. & Klein, J. Fluidity of bound hydration layers. Science 297, 1540–1543 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Ludema, K. C. & Tabor, D. The friction and visco-elastic properties of polymeric solids. Wear 9, 329–348 (1966).

    CAS  Article  Google Scholar 

  30. 30

    Israelachvili, J. N. Intermolecular and Surface Forces 3rd edn, 494 (Academic, 2011).

    Google Scholar 

  31. 31

    Ahn, B. K., Lee, D. W., Israelachvili, J. N. & Waite, J. H. Surface-initiated self-healing of polymers in aqueous media. Nature Mater. 13, 867–872 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation (NSF) through the MRSEC Program DMR-1121053 (MRL-UCSB), which also supported the MRL Central Facilities (a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org)). J.H.W. and B.K.A. acknowledge support from the Office of Naval Research N000141310867. J.H.W. and J.N.I. also acknowledge support from the US National Institutes of Health (R01 DE018468). Authors thank R. Mirshafian for help with optical microscope and W. Wei for discussions.

Author information

Affiliations

Authors

Contributions

Q.Z. and J.H.W. conceived the concept of materials processing. Q.Z. was responsible for the experimental part with input from B.K.A. who advised on PAAcat synthesis, SFA, confocal microscopy and FTIR. S.S. synthesized PAAcat copolymers. D.W.L. planned and performed SFA experiments and analysed the data. D.W.L. and B.K.A. performed and analysed confocal microscope experiments. Q.Z., D.W.L., B.K.A. and J.H.W. analysed data and wrote the paper. All authors read and commented on the paper. J.H.W. supervised the overall project.

Corresponding authors

Correspondence to Jacob N. Israelachvili or J. Herbert Waite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4999 kb)

Supplementary Movie 1

Supplementary Movie 1 (WMV 8252 kb)

Supplementary Movie 2

Supplementary Movie 2 (WMV 1857 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Lee, D., Ahn, B. et al. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nature Mater 15, 407–412 (2016). https://doi.org/10.1038/nmat4539

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing