Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The surface science of nanocrystals

An Erratum to this article was published on 24 February 2016

This article has been updated

Abstract

All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands — molecules that bind to the surface — are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capping-layer structure.
Figure 2: Chemistry of ligand binding.
Figure 3: Effect of ligands on nanocrystal surface states.
Figure 4: Effect of surface ligands on electronic states within the nanocrystal inorganic core.
Figure 5: Modular design of surface ligands for biocompatible nanomaterials.
Figure 6: Nanocrystals for device applications.

Similar content being viewed by others

Change history

  • 27 January 2016

    In the version of this Review Article originally published, the righthand panel of Fig. 1b was incorrect. This error has been corrected in the online versions of the Review Article.

  • 24 February 2016

    Nature Materials 15, 141–153 (2016); published online 22 January 2016; corrected after print 27 January 2016. In the version of this Review Article originally published, the righthand panel of Fig. 1b was incorrect. The correct Figure is shown below and this error has been corrected in the online versions of the Review Article.

References

  1. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Google Scholar 

  2. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  CAS  Google Scholar 

  3. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    CAS  Google Scholar 

  4. Giessibl, F. J. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267, 68–71 (1995).

    CAS  Google Scholar 

  5. Chadi, D. J. Atomic and electronic structures of reconstructed Si(100) surfaces. Phys. Rev. Lett. 43, 43–47 (1979).

    CAS  Google Scholar 

  6. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113, 7152–7167 (1991).

    CAS  Google Scholar 

  7. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  Google Scholar 

  8. Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).

    CAS  Google Scholar 

  9. Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    CAS  Google Scholar 

  10. Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    CAS  Google Scholar 

  11. Pellegrino, T. et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004).

    CAS  Google Scholar 

  12. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Google Scholar 

  13. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10, 936–941 (2011).

    CAS  Google Scholar 

  14. Nuzzo, R. G., Zegarski, B. R. & Dubois, L. H. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J. Am. Chem. Soc. 109, 733–740 (1987).

    CAS  Google Scholar 

  15. Dubois, L. H., Zegarski, B. R. & Nuzzo, R. G. Molecular ordering of organosulfur compounds on Au(111) and Au(100): adsorption from solution and in ultrahigh vacuum. J. Chem. Phys. 98, 678–688 (1993).

    CAS  Google Scholar 

  16. Dubois, L. H. & Nuzzo, R. G. Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 43, 437–463 (1992).

    CAS  Google Scholar 

  17. Hakkinen, H. The gold–sulfur interface at the nanoscale. Nature Chem. 4, 443–455 (2012).

    Google Scholar 

  18. Hostetler, M. J., Stokes, J. J. & Murray, R. W. Infrared spectroscopy of three-dimensional self-assembled monolayers: n-alkanethiolate monolayers on gold cluster compounds. Langmuir 12, 3604–3612 (1996).

    CAS  Google Scholar 

  19. Badia, A., Cuccia, L., Demers, L., Morin, F. & Lennox, R. B. Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: a DSC, FT-IR, and deuterium NMR study. J. Am. Chem. Soc. 119, 2682–2692 (1997).

    CAS  Google Scholar 

  20. Frederick, M. T., Achtyl, J. L., Knowles, K. E., Weiss, E. A. & Geiger, F. M. Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies. J. Am. Chem. Soc. 133, 7476–7481 (2011).

    CAS  Google Scholar 

  21. Morris-Cohen, A. J., Malicki, M., Peterson, M. D., Slavin, J. W. J. & Weiss, E. A. Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots. Chem. Mater. 25, 1155–1165 (2013).

    CAS  Google Scholar 

  22. Protesescu, L. et al. Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry. J. Am. Chem. Soc. 137, 1862–1874 (2015).

    CAS  Google Scholar 

  23. Green, M. L. H. A new approach to the formal classification of covalent compounds of the elements. J. Organomet. Chem. 500, 127–148 (1995).

    CAS  Google Scholar 

  24. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal–carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    CAS  Google Scholar 

  25. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    CAS  Google Scholar 

  26. Green, M. L. H. & Parkin, G. Application of the covalent bond classification method for the teaching of inorganic chemistry. J. Chem. Educ. 91, 807–816 (2014).

    CAS  Google Scholar 

  27. De Roo, J. et al. Carboxylic-acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif. Angew. Chem. Int. Ed. 54, 6488–6491 (2015).

    CAS  Google Scholar 

  28. Moreels, I. et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 6101–6106 (2007).

    CAS  Google Scholar 

  29. Luther, J. M. & Pietryga, J. M. Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials. ACS Nano 7, 1845–1849 (2013).

    CAS  Google Scholar 

  30. Israelachvili, J. N. Intermolecular and Surface Forces (Elsevier, 2011).

    Google Scholar 

  31. Zherebetskyy, D. et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344, 1380–1384 (2014).

    CAS  Google Scholar 

  32. Fritzinger, B. et al. In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 131, 3024–3032 (2009).

    CAS  Google Scholar 

  33. Fritzinger, B., Capek, R. K., Lambert, K., Martins, J. C. & Hens, Z. Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J. Am. Chem. Soc. 132, 10195–10201 (2010).

    CAS  Google Scholar 

  34. Gomes, R. et al. Binding of phosphonic acids to CdSe quantum dots: a solution NMR study. J. Phys. Chem. Lett. 2, 145–152 (2011).

    CAS  Google Scholar 

  35. Lingley, Z., Lu, S. & Madhukar, A. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer. Nano Lett. 11, 2887–2891 (2011).

    CAS  Google Scholar 

  36. Hostetler, M. J., Templeton, A. C. & Murray, R. W. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15, 3782–3789 (1999).

    CAS  Google Scholar 

  37. Owen, J. S., Park, J., Trudeau, P.-E. & Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium–selenide nanocrystal surfaces. J. Am. Chem. Soc. 130, 12279–12281 (2008).

    CAS  Google Scholar 

  38. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  39. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    CAS  Google Scholar 

  40. Fedin, I. & Talapin, D. V. Probing the surface of colloidal nanomaterials with potentiometry in situ. J. Am. Chem. Soc. 136, 11228–11231 (2014).

    CAS  Google Scholar 

  41. Rosen, E. L. et al. Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. Angew. Chem. Int. Ed. 51, 684–689 (2012).

    CAS  Google Scholar 

  42. Pearson, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988).

    CAS  Google Scholar 

  43. Xu, C. et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 9938–9939 (2004).

    CAS  Google Scholar 

  44. Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M. & Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878 (2005).

    CAS  Google Scholar 

  45. Webber, D. H. & Brutchey, R. L. Ligand exchange on colloidal CdSe nanocrystals using thermally labile tert-butylthiol for improved photocurrent in nanocrystal films. J. Am. Chem. Soc. 134, 1085–1092 (2011).

    Google Scholar 

  46. Munro, A. M., Jen- La Plante, I., Ng, M. S. & Ginger, D. S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 111, 6220–6227 (2007).

    CAS  Google Scholar 

  47. Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    CAS  Google Scholar 

  48. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotech. 7, 577–582 (2012).

    CAS  Google Scholar 

  49. Aldana, J., Wang, Y. A. & Peng, X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001).

    CAS  Google Scholar 

  50. Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    CAS  Google Scholar 

  51. Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Mater. 13, 796–801 (2014).

    CAS  Google Scholar 

  52. Ning, Z. et al. Air-stable n-type colloidal quantum dot solids. Nature Mater. 13, 822–828 (2014).

    CAS  Google Scholar 

  53. Boyer, J. L., Rochford, J., Tsai, M.-K., Muckerman, J. T. & Fujita, E. Ruthenium complexes with non-innocent ligands: electron distribution and implications for catalysis. Coord. Chem. Rev. 254, 309–330 (2010).

    CAS  Google Scholar 

  54. Frederick, M. T. & Weiss, E. A. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 4, 3195–3200 (2010).

    CAS  Google Scholar 

  55. Malinsky, M. D., Kelly, K. L., Schatz, G. C. & Van Duyne, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001).

    CAS  Google Scholar 

  56. Kwon, S. G. et al. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 12, 5382–5388 (2012).

    CAS  Google Scholar 

  57. Duan, H. et al. Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J. Phys. Chem. C 112, 8127–8131 (2008).

    CAS  Google Scholar 

  58. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  59. Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G. & Jensen, K. F. Full color emission from II–VI semiconductor quantum dot–polymer composites. Adv. Mater. 12, 1102–1105 (2000).

    CAS  Google Scholar 

  60. Howes, P. D., Chandrawati, R. & Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014).

    Google Scholar 

  61. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  Google Scholar 

  62. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    CAS  Google Scholar 

  63. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  Google Scholar 

  64. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    CAS  Google Scholar 

  65. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004).

    CAS  Google Scholar 

  66. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    CAS  Google Scholar 

  67. Choi, S. H. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    CAS  Google Scholar 

  68. Mitchell, G. P., Mirkin, C. A. & Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    CAS  Google Scholar 

  69. Mattoussi, H. et al. Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    CAS  Google Scholar 

  70. Lee, J.-H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Med. 13, 95–99 (2007).

    CAS  Google Scholar 

  71. Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 129, 13987–13996 (2007).

    CAS  Google Scholar 

  72. Liu, W. et al. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 130, 1274–1284 (2008).

    CAS  Google Scholar 

  73. Stewart, M. H. et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J. Am. Chem. Soc. 132, 9804–9813 (2010).

    CAS  Google Scholar 

  74. Zhan, N., Palui, G., Safi, M., Ji, X. & Mattoussi, H. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J. Am. Chem. Soc. 135, 13786–13795 (2013).

    CAS  Google Scholar 

  75. Kim, S. & Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652–14653 (2003).

    CAS  Google Scholar 

  76. Na, H. B. et al. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6, 389–399 (2011).

    Google Scholar 

  77. Medintz, I. L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater. 2, 630–638 (2003).

    CAS  Google Scholar 

  78. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    CAS  Google Scholar 

  79. Pinaud, F., King, D., Moore, H.-P. & Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004).

    CAS  Google Scholar 

  80. Liu, W. et al. Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand. J. Am. Chem. Soc. 132, 472–483 (2010).

    CAS  Google Scholar 

  81. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS  Google Scholar 

  82. Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nature Rev. Drug Discov. 2, 214–221 (2003).

    CAS  Google Scholar 

  83. Israelachvili, J. The different faces of poly(ethylene glycol). Proc. Natl Acad. Sci. USA 94, 8378–8379 (1997).

    CAS  Google Scholar 

  84. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2011).

    Google Scholar 

  85. Moyano, D. F. et al. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8, 6748–6755 (2014).

    CAS  Google Scholar 

  86. Yildiz, I. et al. Hydrophilic CdSe−ZnS core−shell quantum dots with reactive functional groups on their surface. Langmuir 26, 11503–11511 (2010).

    CAS  Google Scholar 

  87. Ling, D. et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136, 5647–5655 (2014).

    CAS  Google Scholar 

  88. Giovanelli, E. et al. Highly enhanced affinity of multidentate versus bidentate zwitterionic ligands for long-term quantum dot bioimaging. Langmuir 28, 15177–15184 (2012).

    CAS  Google Scholar 

  89. Zhang, P. et al. Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: conjugation-ready nanotags for living-virus labeling and imaging. J. Am. Chem. Soc. 134, 8388–8391 (2012).

    CAS  Google Scholar 

  90. Blanco-Canosa, J. B., Medintz, I. L., Farrell, D., Mattoussi, H. & Dawson, P. E. Rapid covalent ligation of fluorescent peptides to water solubilized quantum dots. J. Am. Chem. Soc. 132, 10027–10033 (2010).

    CAS  Google Scholar 

  91. Han, H.-S. et al. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine−norbornene cycloaddition. J. Am. Chem. Soc. 132, 7838–7839 (2010).

    CAS  Google Scholar 

  92. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 12, 991–1003 (2013).

    CAS  Google Scholar 

  93. Ling, D., Hackett, M. J. & Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today 9, 457–477 (2014).

    CAS  Google Scholar 

  94. Talapin, D. V. & Steckel, J. Quantum dot light-emitting devices. MRS Bull. 38, 685–695 (2013).

    CAS  Google Scholar 

  95. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    CAS  Google Scholar 

  96. Kovalenko, M. V., Bodnarchuk, M. I., Zaumseil, J., Lee, J.-S. & Talapin, D. V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 132, 10085–10092 (2010).

    CAS  Google Scholar 

  97. Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    CAS  Google Scholar 

  98. Dolzhnikov, D. S. et al. Composition-matched molecular 'solders' for semiconductors. Science 347, 425–428 (2015).

    CAS  Google Scholar 

  99. Dirin, D. N. et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136, 6550–6553 (2014).

    CAS  Google Scholar 

  100. Zhang, H., Jang, J., Liu, W. & Talapin, D. V. Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. ACS Nano 8, 7359–7369 (2014).

    CAS  Google Scholar 

  101. Fafarman, A. T. et al. Thiocyanate-capped nanocrystal colloids: vibrational reporter of surface chemistry and solution-based route to enhanced coupling in nanocrystal solids. J. Am. Chem. Soc. 133, 15753–15761 (2011).

    CAS  Google Scholar 

  102. Oh, S. J. et al. Engineering charge injection and charge transport for high performance PbSe nanocrystal thin film devices and circuits. Nano Lett. 14, 6210–6216 (2014).

    CAS  Google Scholar 

  103. Choi, J.-H. et al. Bandlike transport in strongly coupled and doped quantum dot solids: a route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012).

    CAS  Google Scholar 

  104. Lee, J.-S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    CAS  Google Scholar 

  105. Kim, D. K., Lai, Y., Diroll, B. T., Murray, C. B. & Kagan, C. R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature Commun. 3, 1216 (2012).

    Google Scholar 

  106. Shabaev, A., Efros, A. L. & Efros, A. L. Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013).

    CAS  Google Scholar 

  107. Crisp, R. W., Schrauben, J. N., Beard, M. C., Luther, J. M. & Johnson, J. C. Coherent exciton delocalization in strongly coupled quantum dot arrays. Nano Lett. 13, 4862–4869 (2013).

    CAS  Google Scholar 

  108. Jang, J., Liu, W., Son, J. S. & Talapin, D. V. Temperature-dependent Hall and field-effect mobility in strongly coupled all-inorganic nanocrystal arrays. Nano Lett. 14, 653–662 (2014).

    CAS  Google Scholar 

  109. Jeong, K. S. et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano 6, 89–99 (2012).

    CAS  Google Scholar 

  110. Zhitomirsky, D. et al. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Commun. 5, 1–7 (2014).

    Google Scholar 

  111. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    CAS  Google Scholar 

  112. Kovalenko, M. V., Schaller, R. D., Jarzab, D., Loi, M. A. & Talapin, D. V. Inorganically functionalized PbS–CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134, 2457–2460 (2012).

    CAS  Google Scholar 

  113. Panthani, M. G. et al. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal inks for printable photovoltaics. J. Am. Chem. Soc. 130, 16770–16777 (2008).

    CAS  Google Scholar 

  114. Panthani, M. G. et al. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces. Nano Lett. 14, 670–675 (2014).

    CAS  Google Scholar 

  115. Jiang, C., Lee, J.-S. & Talapin, D. V. Soluble precursors for CuInSe2, CuIn1–xGaxSe2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands. J. Am. Chem. Soc. 134, 5010–5013 (2012).

    CAS  Google Scholar 

  116. Son, J. S. et al. All-inorganic nanocrystals as a glue for BiSbTe grains: design of interfaces in mesostructured thermoelectric materials. Angew. Chem. Int. Ed. 53, 7466–7470 (2014).

    CAS  Google Scholar 

  117. Boles, M. A. & Talapin, D. V. Connecting the dots. Science 344, 1340–1341 (2014).

    CAS  Google Scholar 

  118. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  119. Mattoussi, H., Cumming, A. W., Murray, C. B., Bawendi, M. G. & Ober, R. Properties of CdSe nanocrystal dispersions in the dilute regime: structure and interparticle interactions. Phys. Rev. B 58, 7850–7863 (1998).

    CAS  Google Scholar 

  120. Saunders, A. E. & Korgel, B. A. Second virial coefficient measurements of dilute gold nanocrystal dispersions using small-angle X-ray scattering. J. Phys. Chem. B 108, 16732–16738 (2004).

    CAS  Google Scholar 

  121. Schapotschnikow, P., Pool, R. & Vlugt, T. J. H. Molecular simulations of interacting nanocrystals. Nano Lett. 8, 2930–2934 (2008).

    CAS  Google Scholar 

  122. Hens, Z. & Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 25, 1211–1221 (2013).

    CAS  Google Scholar 

  123. Schapotschnikow, P., Hommersom, B. & Vlugt, T. J. H. Adsorption and binding of ligands to CdSe nanocrystals. J. Phys. Chem. C 113, 12690–12698 (2009).

    CAS  Google Scholar 

  124. Panthani, M. G. et al. Graphene-supported high-resolution TEM and STEM imaging of silicon nanocrystals and their capping ligands. J. Phys. Chem. C 116, 22463–22468 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (Award DMR-1310398) and DOD Office of Naval Research (ONR Grant N00014-13-1-0490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Talapin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boles, M., Ling, D., Hyeon, T. et al. The surface science of nanocrystals. Nature Mater 15, 141–153 (2016). https://doi.org/10.1038/nmat4526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing