Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

Abstract

Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure–function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: PGmDs become more prevalent and larger in dense connective tissues with development, ageing and mechanical adaptation.
Figure 2: PGmDs attenuate local strain transmission and cell deformation in fibrocartilage.
Figure 3: PGmDs alter local cell mechano-response to applied tissue-level mechanical deformation.
Figure 4: HetTECs reproduce the structural, compositional and molecular features of native-tissue FmDs and PGmDs.
Figure 5: HetTECs reproduce native-tissue domain-dependent strain transfer characteristics and mechano-response.
Figure 6: HetTECs provide a platform to study mechanobiology of developing and pathological fibrous tissues.

References

  1. Andersson, G. B. Epidemiological features of chronic low-back pain. Lancet 354, 581–585 (1999).

    CAS  Article  Google Scholar 

  2. Englund, M., Roemer, F. W., Hayashi, D., Crema, M. D. & Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nature Rev. Rheumatol. 8, 412–419 (2012).

    CAS  Article  Google Scholar 

  3. Nerurkar, N. L. et al. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nature Mater. 8, 986–992 (2009).

    CAS  Article  Google Scholar 

  4. Fisher, M. B. et al. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds. J. Biomech. 48, 1412–1419 (2015).

    Article  Google Scholar 

  5. Baek, J. et al. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J. Orthop. Res. 33, 572–583 (2015).

    CAS  Article  Google Scholar 

  6. Puetzer, J. L., Koo, E. & Bonassar, L. J. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J. Biomech. 48, 1436–1443 (2015).

    Article  Google Scholar 

  7. Baker, B. M. et al. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc. Natl Acad. Sci. USA 109, 14176–14181 (2012).

    CAS  Article  Google Scholar 

  8. Han, W. M. et al. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys. J. 105, 807–817 (2013).

    CAS  Article  Google Scholar 

  9. Upton, M. L., Gilchrist, C. L., Guilak, F. & Setton, L. A. Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys. J. 95, 2116–2124 (2008).

    CAS  Article  Google Scholar 

  10. Lai, J. H. & Levenston, M. E. Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression. Osteoarthritis Cartilage 18, 1291–1299 (2010).

    CAS  Article  Google Scholar 

  11. Bruehlmann, S. B., Hulme, P. A. & Duncan, N. A. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. J. Biomech. 37, 223–231 (2004).

    Article  Google Scholar 

  12. Elliott, D. M. & Setton, L. A. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123, 256–263 (2001).

    CAS  Article  Google Scholar 

  13. O’Connell, G. D., Guerin, H. L. & Elliott, D. M. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131, 111007 (2009).

    Article  Google Scholar 

  14. Abraham, A. C., Edwards, C. R., Odegard, G. M. & Donahue, T. L. H. Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. J. Mech. Behav. Biomed. Mater. 4, 2024–2030 (2011).

    Article  Google Scholar 

  15. Fang, F., Sawhney, A. S. & Lake, S. P. Different regions of bovine deep digital flexor tendon exhibit distinct elastic, but not viscous, mechanical properties under both compression and shear loading. J. Biomech. 47, 2869–2877 (2014).

    Article  Google Scholar 

  16. Han, W. M. et al. Impact of cellular microenvironment and mechanical perturbation on calcium signalling in meniscus fibrochondrocytes. Eur. Cell Mater. 27, 321–331 (2014).

    CAS  Article  Google Scholar 

  17. Fang, F. & Lake, S. P. Multiscale strain analysis of tendon subjected to shear and compression demonstrates strain attenuation, fiber sliding, and reorganization. J. Orthop. Res. 33, 1704–1712 (2015).

    CAS  Article  Google Scholar 

  18. Malaviya, P. et al. An in vivo model for load-modulated remodeling in the rabbit flexor tendon. J. Orthop. Res. 18, 116–125 (2000).

    CAS  Article  Google Scholar 

  19. Attia, M. et al. Alterations of overused supraspinatus tendon: a possible role of glycosaminoglycans and HARP/pleiotrophin in early tendon pathology. J. Orthop. Res. 30, 61–71 (2012).

    CAS  Article  Google Scholar 

  20. Bell, R. et al. Controlled treadmill exercise eliminates chondroid deposits and restores tensile properties in a new murine tendinopathy model. J. Biomech. 46, 498–505 (2013).

    Article  Google Scholar 

  21. Bell, R. et al. ADAMTS5 is required for biomechanically-stimulated healing of murine tendinopathy. J. Orthop. Res. 31, 1540–1548 (2013).

    CAS  Article  Google Scholar 

  22. Scott, A. et al. Increased versican content is associated with tendinosis pathology in the patellar tendon of athletes with jumper’s knee. Scand. J. Med. Sci. Sports 18, 427–435 (2008).

    CAS  Article  Google Scholar 

  23. Wang, V. M. et al. Murine tendon function is adversely affected by aggrecan accumulation due to the knockout of ADAMTS5. J. Orthop. Res. 30, 620–626 (2012).

    CAS  Article  Google Scholar 

  24. Szczesny, S. E. & Elliott, D. M. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon. Acta Biomater. 10, 2582–2590 (2014).

    CAS  Article  Google Scholar 

  25. Chahine, N. O., Wang, C. C.-B., Hung, C. T. & Ateshian, G. A. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 37, 1251–1261 (2004).

    Article  Google Scholar 

  26. Ateshian, G. A., Rajan, V., Chahine, N. O., Canal, C. E. & Hung, C. T. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131, 061003 (2009).

    Article  Google Scholar 

  27. Canal Guterl, C., Hung, C. T. & Ateshian, G. A. Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. J. Biomech. 43, 1343–1350 (2010).

    Article  Google Scholar 

  28. Baker, B. M., Nerurkar, N. L., Burdick, J. A., Elliott, D. M. & Mauck, R. L. Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds. J. Biomech. Eng. 131, 101012 (2009).

    Article  Google Scholar 

  29. Raj, A. & Tyagi, S. Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods Enzymol. 472, 365–386 (2010).

    CAS  Article  Google Scholar 

  30. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods 5, 877–879 (2008).

    CAS  Article  Google Scholar 

  31. Plaas, A. et al. Biochemical identification and immunolocalizaton of aggrecan, ADAMTS5 and inter-alpha-trypsin-inhibitor in equine degenerative suspensory ligament desmitis. J. Orthop. Res. 29, 900–906 (2011).

    CAS  Article  Google Scholar 

  32. Asai, S. et al. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration. Stem Cells Dayt. Ohio 32, 3266–3277 (2014).

    CAS  Article  Google Scholar 

  33. Heo, S.-J. et al. Fiber stretch and reorientation modulates mesenchymal stem cell morphology and fibrous gene expression on oriented nanofibrous microenvironments. Ann. Biomed. Eng. 39, 2780–2790 (2011).

    Article  Google Scholar 

  34. Mauck, R. L., Yuan, X. & Tuan, R. S. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14, 179–189 (2006).

    CAS  Article  Google Scholar 

  35. Mauck, R. L., Martinez-Diaz, G. J., Yuan, X. & Tuan, R. S. Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat. Rec. 290, 48–58 (2007).

    CAS  Article  Google Scholar 

  36. Qu, F. et al. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface. Biomaterials 39, 85–94 (2015).

    CAS  Article  Google Scholar 

  37. Kim, D. H., Martin, J. T., Elliott, D. M., Smith, L. J. & Mauck, R. L. Phenotypic stability, matrix elaboration and functional maturation of nucleus pulposus cells encapsulated in photocrosslinkable hyaluronic acid hydrogels. Acta Biomater. 12, 21–29 (2015).

    CAS  Article  Google Scholar 

  38. Peltz, C. D., Perry, S. M., Getz, C. L. & Soslowsky, L. J. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27, 416–420 (2009).

    Article  Google Scholar 

  39. Driscoll, T. P., Cosgrove, B. D., Heo, S.-J., Shurden, Z. E. & Mauck, R. L. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108, 2783–2793 (2015).

    CAS  Article  Google Scholar 

  40. Maas, S. A., Ellis, B. J., Ateshian, G. A. & Weiss, J. A. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134, 011005 (2012).

    Article  Google Scholar 

  41. Jacobs, N. T., Cortes, D. H., Vresilovic, E. J. & Elliott, D. M. Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy. J. Biomech. Eng. 135, 021004 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Raj for assistance with fluorescent in situ hybridization, J. Caplan and S. Qu for assistance with confocal microscopy, A. Marcozzi for assistance with histology, and J. Peloquin for finite-element model mesh generation. The research was financially supported by the National Institutes of Health grant R01 EB02425 and the Penn Center of Musculoskeletal Disorders grant P30AR050950. The authors also would like to thank the BioImaging Center at the Delaware Biotechnology Institute for providing resources that contributed to this research.

Author information

Authors and Affiliations

Authors

Contributions

W.M.H., S.-J.H., T.P.D., J.F.D., C.M.M., L.J.S., R.L.D., R.L.M. and D.M.E. designed the studies. W.M.H., S.-J.H., T.P.D., J.F.D. and C.M.M. performed the experiments. W.M.H., S.-J.H., T.P.D., J.F.D., C.M.M., L.J.S., R.L.D., R.L.M. and D.M.E. analysed and interpreted the data. W.M.H., S.-J.H., R.L.M. and D.M.E. drafted the manuscript, and all authors edited the final submission.

Corresponding authors

Correspondence to Robert L. Mauck or Dawn M. Elliott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3014 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, W., Heo, SJ., Driscoll, T. et al. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. Nature Mater 15, 477–484 (2016). https://doi.org/10.1038/nmat4520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4520

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing