Abstract

Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2,3,4,5,6,7 and some topological magnetic structures8,9,10,11,12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13,14,15,16,17,18,19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

  2. 2.

    et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

  3. 3.

    et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

  4. 4.

    et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

  5. 5.

    et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  6. 6.

    et al. Spin–orbit-driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

  7. 7.

    & Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

  8. 8.

    Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).

  9. 9.

    Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  10. 10.

    et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

  11. 11.

    , , & Helical spin structure in manganese silicide MnSi. Solid State Commun. 19, 525–528 (1976).

  12. 12.

    et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

  13. 13.

    , , , & Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

  14. 14.

    , , & Chiral spin torque at magnetic domain walls. Nature Nanotech. 8, 527–533 (2013).

  15. 15.

    , , , & Current-driven dynamics of chiral ferromagnetic domain walls. Nature Mater. 12, 611–616 (2013).

  16. 16.

    et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 214401 (2013).

  17. 17.

    et al. Measuring and tailoring the Dzyaloshinskii–Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B 90, 020402 (2014).

  18. 18.

    et al. Interface control of the magnetic chirality in CoFeB—MgO heterostructures with heavy metal underlayers. Nature Commun. 5, 4655 (2014).

  19. 19.

    et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nature Commun. 4, 2671 (2013).

  20. 20.

    , , , & Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 8, 839–844 (2013).

  21. 21.

    & Role of anisotropic exchange interactions in determining the properties of spin glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

  22. 22.

    Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

  23. 23.

    et al. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures. Appl. Phys. Lett. 83, 105–107 (2003).

  24. 24.

    , & Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  25. 25.

    A phenomenological theory of damping in ferromagnetic materials. Magn. IEEE Trans. 40, 3443–3449 (2004).

  26. 26.

    et al. Pinning-dependent field-driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film. Phys. Rev. Lett. 113, 027205 (2014).

  27. 27.

    et al. Universal magnetic domain wall dynamics in the presence of weak disorder. C. R. Phys. 14, 651–666 (2013).

  28. 28.

    , & Creep and depinning in disordered media. Phys. Rev. B 62, 6241–6267 (2000).

  29. 29.

    et al. Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering. Phys. Rev. B 91, 104414 (2015).

  30. 30.

    , , & Magnon lifetimes on the Fe (110) surface: the role of spin–orbit coupling. Phys. Rev. Lett. 108, 197205 (2012).

  31. 31.

    , & Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques. J. Phys. Condens. Matter 26, 104202 (2014).

  32. 32.

    , , & Chirality from interfacial spin–orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 111, 216601 (2013).

  33. 33.

    et al. Magnetic bubblecade memory based on chiral domain walls. Sci. Rep. 5, 9166 (2015).

  34. 34.

    et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

Download references

Acknowledgements

We thank H. W. Lee, K.-J. Lee and T. Giamarchi for helpful discussions, as well as A. Thiaville, S. Pizzini and J. Vogel for critically reading the manuscript and discussing the results. This work was partially supported by the ANR (11 BS10 008, ESPERADO) project and European Commission under the Seventh Framework Programme (GA 318144, SPOT) and (GA-2012-322369, Sport for Memory). A.M. has been supported by King Abdullah University of Science and Technology.

Author information

Author notes

    • Emilie Jué

    Present address: Electromagnetics Division, NIST Boulder, Colorado 80305, USA.

Affiliations

  1. University of Grenoble Alpes INAC-SPINTEC, F-38000 Grenoble, France

    • Emilie Jué
    • , C. K. Safeer
    • , Marc Drouard
    • , Alexandre Lopez
    • , Paul Balint
    • , Liliana Buda-Prejbeanu
    • , Olivier Boulle
    • , Stephane Auffret
    • , Ioan Mihai Miron
    •  & Gilles Gaudin
  2. CNRS INAC-SPINTEC, F-38000 Grenoble, France

    • Emilie Jué
    • , C. K. Safeer
    • , Marc Drouard
    • , Alexandre Lopez
    • , Paul Balint
    • , Liliana Buda-Prejbeanu
    • , Olivier Boulle
    • , Stephane Auffret
    • , Ioan Mihai Miron
    •  & Gilles Gaudin
  3. CEA INAC-SPINTEC, F-38000 Grenoble, France

    • Emilie Jué
    • , C. K. Safeer
    • , Marc Drouard
    • , Alexandre Lopez
    • , Paul Balint
    • , Liliana Buda-Prejbeanu
    • , Olivier Boulle
    • , Stephane Auffret
    • , Ioan Mihai Miron
    •  & Gilles Gaudin
  4. CNRS Institut Néel, F-38042 Grenoble, France

    • Alain Schuhl
  5. King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia

    • Aurelien Manchon

Authors

  1. Search for Emilie Jué in:

  2. Search for C. K. Safeer in:

  3. Search for Marc Drouard in:

  4. Search for Alexandre Lopez in:

  5. Search for Paul Balint in:

  6. Search for Liliana Buda-Prejbeanu in:

  7. Search for Olivier Boulle in:

  8. Search for Stephane Auffret in:

  9. Search for Alain Schuhl in:

  10. Search for Aurelien Manchon in:

  11. Search for Ioan Mihai Miron in:

  12. Search for Gilles Gaudin in:

Contributions

E.J., C.K.S., G.G., A.M. and I.M.M. planned the experiment; I.M.M., M.D., A.L. and S.A. fabricated the samples. C.K.S., E.J., P.B. and I.M.M. performed the experiments; L.B.-P. and I.M.M. performed the numerical simulations; E.J., C.K.S., A.M. and I.M.M. analysed the data; I.M.M. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ioan Mihai Miron.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4518

Further reading