Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of crystal diversity in understanding mass transfer in nanoporous materials

Abstract

Nanoporous materials find widespread applications in our society: from drug delivery to environmentally friendly catalysis and separation technologies1,2,3,4,5,6. The efficient design of these processes depends crucially on understanding the mass transfer mechanism. This is conventionally determined by uptake or release experiments, carried out with assemblages of nanoporous crystals, assuming all crystals to be identical. Using micro-imaging techniques7, we now show that even apparently identical crystals (that is, crystals of similar size and shape) from the same batch may exhibit very different uptake rates. The relative contribution of the surface resistance to the overall transport resistance varied with both the crystal and the guest molecule. As a consequence of this crystal diversity, the conventional approach may not distinguish correctly between the different mass transfer mechanisms. Detection of this diversity adds an important new piece of evidence in the search for the origin of the surface barrier phenomenon. Our investigations were carried out with the zeolite SAPO-34, a key material in the methanol-to-olefins (MTO) process8, propane–propene separation9,10 and adsorptive heat transformation11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mimicking mass transfer mechanisms.
Figure 2: Methanol intracrystalline concentrations in two similar SAPO-34 crystals recorded by IFM at 298 K after a pressure step from 0 to 1 mbar.
Figure 3: Single-crystal and multiple-crystal uptake measurements.
Figure 4: Variation of transport resistances with variation of the guest molecules.

Similar content being viewed by others

References

  1. Horcajada, P. et al. Porous metal-organic frameworks nanoscale carriers as a potential platform from drug delivery and imaging. Nature Mater. 9, 172–178 (2009).

    Article  Google Scholar 

  2. Ruthven, D. M., Farooq, S. & Knaebel, K. S. Pressure Swing Adsorption (VCH, 1994).

    Google Scholar 

  3. Kärger, J., Ruthven, D. M. & Theodorou, D. N. Diffusion in Nanoporous Materials (Wiley-VCH, 2012).

    Book  Google Scholar 

  4. Weitkamp, J. & Puppe, L. Catalysis and Zeolites (Springer, 1999).

    Book  Google Scholar 

  5. Cejka, J., Corma, A. & Zones, S Zeolites and Catalysis: Synthesis, Reactions and Applications (Wiley-VCH, 2010).

    Book  Google Scholar 

  6. Humplik, T. et al. Nanostructured materials for water desalination. Nanotechnology 22, 292001 (2011).

    Article  CAS  Google Scholar 

  7. Kärger, J. et al. Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Mater. 13, 333–343 (2014).

    Article  Google Scholar 

  8. Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. Mesopor. Mater. 29, 3–48 (1999).

    Article  Google Scholar 

  9. Ruthven, D. M. & Reyes, S. C. Adsorptive separation of light olefins from paraffins. Micropor. Mesopor. Mater. 104, 59–66 (2007).

    Article  CAS  Google Scholar 

  10. Hedin, N., DeMartin, G. J., Roth, W. J., Strohmaier, K. G. & Reyes, S. C. PFG NMR self-diffusion of small hydrocarbons in high silica DDR, CHA and LTA structures. Micropor. Mesopor. Mater. 109, 327–334 (2008).

    Article  CAS  Google Scholar 

  11. Henninger, S. K., Jeremias, F., Kummer, H., Schossig, P. & Henning, H.-M. Novel sorption materials for solar heating and cooling. Energy Procedia 30, 279–288 (2012).

    Article  CAS  Google Scholar 

  12. Yasuda, Y. Frequency response method for investigation of gas/surface dynamic phenomena. Heterogen. Chem. Rev. 1, 103–124 (1994).

    CAS  Google Scholar 

  13. Eic, M. & Ruthven, D. M. A new experimental technique for measurement of intracrystalline diffusivity. Zeolites 8, 40–45 (1988).

    Article  CAS  Google Scholar 

  14. Zhang, L. et al. Direct assessment of molecular transport in mordenite: dominance of surface resistances. Chem. Commun. (2009)fhtsjw.

  15. Gobin, O. C., Reitmeier, S. J., Jentys, A. & Lercher, J. A. Role of the surface modification on the transport of hexane isomers in ZSM-5. J. Phys. Chem. C 115, 1171–1179 (2011).

    Article  CAS  Google Scholar 

  16. Higgins, J. B. et al. The framework topology of zeolite beta. Zeolites 8, 446–452 (1988).

    Article  CAS  Google Scholar 

  17. Robson, H. & Lillerud, K. P. Verified Syntheses of Zeolitic Materials (Elsevier, 2001).

    Google Scholar 

  18. Karwacki, L., Stavitski, E., Kox, M. H. F., Kornatowski, J. & Weckhuysen, B. M. Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template-removal process. Angew. Chem. Int. Ed. 46, 7228–7231 (2007).

    Article  CAS  Google Scholar 

  19. Gueudré, L., Jolimaître, E., Bats, N. & Dong, W. Diffusion in zeolites: is surface resistance a critical parameter? Adsorption 16, 17–27 (2010).

    Article  Google Scholar 

  20. Mitchell, S., Michels, N.-L., Kunze, K. & Pérez-Ramírez, J. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chem. 4, 825–831 (2012).

    Article  CAS  Google Scholar 

  21. Buurmans, I. L. C. & Weckhuysen, B. M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chem. 4, 873–886 (2012).

    Article  CAS  Google Scholar 

  22. Crank, J. The Mathematics of Diffusion (Clarendon, 1975).

    Google Scholar 

  23. Kärger, J., Pfeifer, H., Rauscher, M. & Walter, A. Self-diffusion of n-Paraffins in NaX Zeolite. J. Chem. Soc. Faraday Trans. I 76, 717–737 (1980).

    Article  Google Scholar 

  24. Wragg, D. S., Johnson, R. E., Norby, P. & Fjellvag, H. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies. Micropor. Mesopor. Mater. 134, 210–215 (2010).

    Article  CAS  Google Scholar 

  25. Briend, M., Vomscheid, R., Peltre, M. J., Man, P. P. & Barthomeuf, D. Infuence of the choice of the template on the short- and long-term stability of SAPO-34 zeolite. J. Phys. Chem. 99, 8270–8276 (1995).

    Article  CAS  Google Scholar 

  26. Heinke, L., Gu, Z. & Wöll, C. The surface barrier phenomenon at the loading of metal-organic frameworks. Nature Commun. 5, 4562 (2014).

    Article  CAS  Google Scholar 

  27. Fjermestad, T., Svelle, S. & Swang, O. Mechanism of Si island formation in SAPO-34. J. Phys. Chem. C 119, 2086–2095 (2015).

    Article  CAS  Google Scholar 

  28. Mores, D. et al. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J. 14, 11320–11327 (2008).

    Article  CAS  Google Scholar 

  29. Qian, Q. et al. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes. Chem. Eur. J. 19, 11204–11215 (2013).

    Article  CAS  Google Scholar 

  30. Qian, Q. et al. Single-particle spectroscopy of alcohol-to-olefins over SAPO-34 at different reaction stages: crystal accessibility and hydrocarbons reactivity. ChemCatChem 6, 772–783 (2014).

    Article  CAS  Google Scholar 

  31. Remy, T. et al. Adsorption and separation of C1-C8 alcohols on SAPO-34. J. Phys. Chem. C 115, 8117–8125 (2011).

    Article  CAS  Google Scholar 

  32. Chmelik, C. & Kärger, J. In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 39, 4864–4884 (2010).

    Article  CAS  Google Scholar 

  33. Heinke, L., Kortunov, P., Tzoulaki, D. & Kärger, J. The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on nanoporous materials. Adsorption 13, 215–223 (2007).

    Article  CAS  Google Scholar 

  34. Chmelik, C. et al. Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett. 104, 085902 (2010).

    Article  Google Scholar 

  35. Heinke, L. Significance of concentration-dependent intracrystalline diffusion and surface permeation for overall mass transfer. Diffus. Fundam. 4, 1–11 (2007).

    Google Scholar 

  36. Karge, H. G. & Kärger, J. in Adsorption and Diffusion (eds H. G., Karge & Weitkamp, J.) 135–206 (Springer, 2008).

    Book  Google Scholar 

  37. Barrer, R. M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, 1978).

    Google Scholar 

  38. Garg, D. R. & Ruthven, D. M. The effect of the concentration dependence of diffusivity on zeolitic sorption curves. Chem. Eng. Sci. 27, 417–423 (1972).

    Article  CAS  Google Scholar 

  39. Titze, T. et al. Microimaging of transient concentration profiles of reactant and product molecules during catalytic conversion in nanoporous materials. Angew. Chem. Int. Ed. 54, 5060–5064 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.C.S.R. is grateful to the Agency for Innovation by Science and Technology in Flanders (IWT) and the Research Foundation—Flanders (FWO—Vlaanderen) for their financial support. Graphical content was supported by Visuality (BE). Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie are acknowledged for establishing the micro-imaging system in Leipzig. Valuable discussions with D. M. Ruthven are particularly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

J.C.S.R., C.C., J.F.M.D. and J.K. contributed to the development of the experimental approach. J.C.S.R. and A.L. conducted the interference microscopy experiments; C.C. and A.L. performed the infrared microscopy measurements; J.C.S.R., C.C. and J.K. contributed to the initial ideas and interpreting experimental data; J.C.S.R., G.V.B. and J.F.M.D. supported the material characterization. J.C.S.R. provided the batch uptake simulations. I.V. and H.T. ensured the performance of the FE-SEM, AFM, XPS and EDX measurements, which were realized by J.C.S.R. All authors participated in the writing of the manuscript.

Corresponding author

Correspondence to Jörg Kärger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remi, J., Lauerer, A., Chmelik, C. et al. The role of crystal diversity in understanding mass transfer in nanoporous materials. Nature Mater 15, 401–406 (2016). https://doi.org/10.1038/nmat4510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing