Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlated metals as transparent conductors

Abstract

The fundamental challenge for designing transparent conductors used in photovoltaics, displays and solid-state lighting is the ideal combination of high optical transparency and high electrical conductivity. Satisfying these competing demands is commonly achieved by increasing carrier concentration in a wide-bandgap semiconductor with low effective carrier mass through heavy doping, as in the case of tin-doped indium oxide (ITO). Here, an alternative design strategy for identifying high-conductivity, high-transparency metals is proposed, which relies on strong electron–electron interactions resulting in an enhancement in the carrier effective mass. This approach is experimentally verified using the correlated metals SrVO3 and CaVO3, which, despite their high carrier concentration (>2.2 × 1022 cm−3), have low screened plasma energies (<1.33 eV), and demonstrate excellent performance when benchmarked against ITO. A method is outlined to rapidly identify other candidates among correlated metals, and strategies are proposed to further enhance their performance, thereby opening up new avenues to develop transparent conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design rules for transparent conductors.
Figure 2: Structure and electrical transport properties of vanadate films.
Figure 3: Optical properties of vanadates.
Figure 4: First-principles calculation results of SrVO3.
Figure 5: Figure of merit ΦTC for transparent conducting materials.

Similar content being viewed by others

References

  1. Freeman, A. J., Poeppelmeier, K. R., Mason, T. O., Chang, R. P. H. & Marks, T. J. Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull. 25, 45–51 (2000).

    CAS  Google Scholar 

  2. Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photon. 6, 809–817 (2012).

    CAS  Google Scholar 

  3. Mizoguchi, H., Kamiya, T., Matsuishi, S. & Hosono, H. A germanate transparent conductive oxide. Nature Commun. 2, 470 (2011).

    Google Scholar 

  4. Tadatsugu, M. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005).

    Google Scholar 

  5. Ginley, D. S., Hosono, H. & Paine, D. C. (eds) Handbook of Transparent Conductors (Springer, 2011).

    Google Scholar 

  6. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Google Scholar 

  7. Brinkman, W. F. & Rice, T. M. Application of Gutzwiller’s variational method to the metal–insulator transition. Phys. Rev. B 2, 4302–4304 (1970).

    Google Scholar 

  8. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    CAS  Google Scholar 

  9. Locquet, J.-P. et al. Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain. Nature 394, 453–456 (1998).

    CAS  Google Scholar 

  10. Armitage, N., Fournier, P. & Greene, R. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

    CAS  Google Scholar 

  11. Eltsev, Y. et al. Anisotropic resistivity and Hall effect in MgB2 single crystals. Phys. Rev. B 66, 180504 (2002).

    Google Scholar 

  12. Zhuang, C. et al. Significant improvements of the high-field properties of carbon-doped MgB2 films by hot-filament-assisted hybrid physical–chemical vapor deposition using methane as the doping source. Supercond. Sci. Technol. 21, 082002 (2008).

    Google Scholar 

  13. Nakajima, M. et al. Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 108, 12238–12242 (2011).

    CAS  Google Scholar 

  14. Analytis, J. G. et al. Bulk superconductivity and disorder in single crystals of LaFePO. Preprint at http://arXiv.org/abs/0810.5368 (2008).

  15. Stemmer, S. Low-dimensional Mott material: Transport in ultrathin epitaxial LaNiO3 films. Appl. Phys. Lett. 96, 062114 (2010).

    Google Scholar 

  16. Nagai, I. et al. Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure. Appl. Phys. Lett. 87, 024105 (2005).

    Google Scholar 

  17. Radetinac, A., Takahashi, K. S., Alff, L., Kawasaki, M. & Tokura, Y. Single-crystalline CaMoO3 and SrMoO3 films grown by pulsed laser deposition in a reductive atmosphere. Appl. Phys. Exp. 3, 073003 (2010).

    Google Scholar 

  18. Fujita, K., Mochida, T. & Nakamura, K. High-temperature thermoelectric properties of NaxCoO2−δ single crystals. Japan J. Appl. Phys. 40, 4644–4647 (2001).

    CAS  Google Scholar 

  19. Hicks, C. W. et al. Quantum oscillations and high carrier mobility in the Delafossite PdCoO2 . Phys. Rev. Lett. 109, 116401 (2012).

    Google Scholar 

  20. Lightsey, P., Lilienfeld, D. & Holcomb, D. Transport properties of cubic NaxWO3 near the insulator–metal transition. Phys. Rev. B 14, 4730–4732 (1976).

    CAS  Google Scholar 

  21. Tashman, J. et al. Epitaxial growth of VO2 by periodic annealing. Appl. Phys. Lett. 104, 063104 (2014).

    Google Scholar 

  22. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    CAS  Google Scholar 

  23. Basov, D. N., Averitt, R. D., Van Der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

    CAS  Google Scholar 

  24. Nishimura, K., Yamada, I., Oka, K., Shimakawa, Y. & Azuma, M. High-pressure synthesis of BaVO3: A new cubic perovskite. J. Phys. Chem. Solids 75, 710–712 (2014).

    CAS  Google Scholar 

  25. Wissgott, P., Kuneš, J., Toschi, A. & Held, K. Dipole matrix element approach versus Peierls approximation for optical conductivity. Phys. Rev. B 85, 205133 (2012).

    Google Scholar 

  26. Fujimori, A. et al. Evolution of the spectral function in Mott–Hubbard systems with d1 configuration. Phys. Rev. Lett. 69, 1796–1799 (1992).

    CAS  Google Scholar 

  27. O’Connor, B., Haughn, C., An, K.-H., Pipe, K. P. & Shtein, M. Transparent and conductive electrodes based on unpatterned, thin metal films. Appl. Phys. Lett. 93, 223304 (2008).

    Google Scholar 

  28. Fuchs, K. The conductivity of thin metallic films according to the electron theory of metals. Proc. Camb. Phil. Soc. 34, 100–108 (1938).

    CAS  Google Scholar 

  29. Qazilbash, M. et al. Electronic correlations in the iron pnictides. Nature Phys. 5, 647–650 (2009).

    CAS  Google Scholar 

  30. Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976).

    CAS  Google Scholar 

  31. Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952).

    Google Scholar 

  32. Sennett, R. S. & Scott, G. D. The structure of evaporated metal films and their optical properties. J. Opt. Soc. Am. 40, 203–210 (1950).

    CAS  Google Scholar 

  33. Fukuda, K., Lim, S. H. N. & Anders, A. Coalescence of magnetron-sputtered silver islands affected by transition metal seeding (Ni, Cr, Nb, Zr, Mo, W, Ta) and other parameters. Thin Solid Films 516, 4546–4552 (2008).

    CAS  Google Scholar 

  34. Formica, N. et al. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces 5, 3048–3053 (2013).

    CAS  Google Scholar 

  35. Wu, H. et al. A transparent electrode based on a metal nanotrough network. Nature Nanotech. 8, 421–425 (2013).

    CAS  Google Scholar 

  36. Lichtenberg, F., Catana, A., Mannhart, J. & Schlom, D. Sr2RuO4: a metallic substrate for the epitaxial growth of YBa2Cu3O7−δ . Appl. Phys. Lett. 60, 1138–1140 (1992).

    CAS  Google Scholar 

  37. Koster, G. et al. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84, 253–298 (2012).

    CAS  Google Scholar 

  38. Zhu, X. et al. Chemical solution deposition of transparent and metallic La0.5Sr0.5TiO3+x/2 films using topotactic reduction. J. Am. Ceram. Soc. 92, 800–804 (2009).

    CAS  Google Scholar 

  39. Stewart, M. et al. Optical study of strained ultrathin films of strongly correlated LaNiO3 . Phys. Rev. B 83, 075125 (2011).

    Google Scholar 

  40. Serway, R. A. Principles of Physics (Saunders College Pub, 1998).

    Google Scholar 

  41. Ehrenreich, H. & Philipp, H. Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962).

    CAS  Google Scholar 

  42. Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Google Scholar 

  43. Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985).

    CAS  Google Scholar 

  44. Ellmer, K. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D 34, 3097–3108 (2001).

    CAS  Google Scholar 

  45. Preissler, N., Bierwagen, O., Ramu, A. T. & Speck, J. S. Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films. Phys. Rev. B 88, 085305 (2013).

    Google Scholar 

  46. Igasaki, Y. & Saito, H. The effects of deposition rate on the structural and electrical properties of ZnO: Al films deposited on (1120) oriented sapphire substrates. J. Appl. Phys. 70, 3613–3619 (1991).

    CAS  Google Scholar 

  47. Ohta, H. et al. Highly electrically conductive indium–tin–oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition. Appl. Phys. Lett. 76, 2740–2742 (2000).

    CAS  Google Scholar 

  48. Kim, H. et al. Effect of film thickness on the properties of indium tin oxide thin films. J. Appl. Phys. 88, 6021–6025 (2000).

    CAS  Google Scholar 

  49. Guo, E.-J. et al. Structure and characteristics of ultrathin indium tin oxide films. Appl. Phys. Lett. 98, 011905–011903 (2011).

    Google Scholar 

  50. Ohta, H., Orita, M., Hirano, M. & Hosono, H. Surface morphology and crystal quality of low resistive indium tin oxide grown on yittria-stabilized zirconia. J. Appl. Phys. 91, 3547–3550 (2002).

    CAS  Google Scholar 

  51. Polyanskiy, M. N. Refractive Index Database (RefractiveIndex.INFO, accessed 29 February 2015); http://refractiveindex.info

    Google Scholar 

  52. Refractive Index of ITO, Indium Tin Oxide, InSnO (Filmetrics, accessed 29 April 2015); http://www.filmetrics.com/refractive-index-database/ITO/Indium-Tin-Oxide-InSnO

  53. Moyer, J. A., Eaton, C. & Engel-Herbert, R. Highly conductive SrVO3 as a bottom electrode for functional Perovskite oxides. Adv. Mater. 25, 3578–3582 (2013).

    CAS  Google Scholar 

  54. Brahlek, M., Zhang, L., Eaton, C., Zhang, H.-T. & Engel-Herbert, R. Accessing a growth window for SrVO3 thin films. Appl. Phys. Lett. 107, 143108 (2015).

    Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the Office of Naval Research through Grant No. N00014-11-1-0665 (L.Z., Y.Z., C.E., L.G., K.M.R., V.G., R.E.-H.), the National Science Foundation through the Penn State MRSEC Program DMR-1420620 (H.-T.Z., W.Z., M.H.W.C.) and Grant No. DMR-1352502 (L.Z., R.E.-H.), the Department of Energy through Grant DE-SC0012375 (M.B., R.E.-H.), the University of Toledo start up funds and the Ohio Department of Development (ODOD) Ohio Research Scholar Program entitled Northwest Ohio Innovators in Thin Film Photovoltaics, Grant No. TECH 09-025 (A.B., H.F.H., N.P.). We thank R. Averitt for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and R.E.-H. conceived and designed the experiments. L.Z., H.-T.Z. and C.E. synthesized SrVO3 thin films. L.Z. and M.B. synthesized CaVO3 thin films. L.Z. performed XRD and AFM measurements. Y.Z. performed DFT calculations and Y.Z. and K.M.R. analysed the theoretical results. L.G. and V.G. performed optical transmission measurements. W.Z. and L.Z. performed the electrical transport measurements, and W.Z., L.Z. and M.H.W.C. analysed the results. A.B., H.F.H. and N.J.P. performed spectroscopic ellipsometry measurements and analysed the results for SrVO3 thin films. Y.X.Z. performed spectroscopic ellipsometry measurements and analysed the results for CaVO3 thin films. L.Z. and R.E.-H. wrote the manuscript and all authors gave comments on the manuscripts and approved the final version.

Corresponding author

Correspondence to Roman Engel-Herbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhou, Y., Guo, L. et al. Correlated metals as transparent conductors. Nature Mater 15, 204–210 (2016). https://doi.org/10.1038/nmat4493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing