Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4

Abstract

Recent progress in the field of topological states of matter1,2 has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs 3,4,5,6), followed by closely related ternary compounds7,8,9,10,11,12,13,14,15,16 and predictions of several weak TIs (refs 17,18,19). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the β-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of β-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the  point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and single crystals of quasi-one-dimensional topological insulator β-Bi4I4.
Figure 2: Electronic structure of β-Bi4I4 from first-principles calculations.
Figure 3: Angle-resolved photoemission spectroscopy (ARPES) spectra of β-Bi4I4.

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  3. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  CAS  Google Scholar 

  4. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  5. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  CAS  Google Scholar 

  6. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  CAS  Google Scholar 

  7. Yan, B. & Zhang, S.-C. Topological materials. Rep. Prog. Phys. 75, 096501 (2012).

    Article  Google Scholar 

  8. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  Google Scholar 

  9. Neupane, M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012).

    Article  Google Scholar 

  10. Okamoto, K. et al. Observation of a highly spin-polarized topological surface state in GeBi2Te4 . Phys. Rev. B 86, 195304 (2012).

    Article  Google Scholar 

  11. Eremeev, S. V. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Commun. 3, 635 (2012).

    Article  Google Scholar 

  12. Souma, S. et al. Topological surface states in lead-based ternary telluride Pb(Bi1−xSbx)2Te4 . Phys. Rev. Lett. 108, 116801 (2012).

    Article  CAS  Google Scholar 

  13. Kuroda, K. et al. Experimental verification of PbBi2Te4 as a 3D topological insulator. Phys. Rev. Lett. 108, 206803 (2012).

    Article  CAS  Google Scholar 

  14. Sato, T. et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 136802 (2010).

    Article  Google Scholar 

  15. Kuroda, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 146801 (2010).

    Article  CAS  Google Scholar 

  16. Chen, Y. L. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010).

    Article  CAS  Google Scholar 

  17. Yan, B., Müchler, L. & Felser, C. Prediction of weak topological insulators in layered semiconductors. Phys. Rev. Lett. 109, 116406 (2012).

    Article  Google Scholar 

  18. Rasche, B. et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Mater. 12, 422–425 (2013).

    Article  CAS  Google Scholar 

  19. Tang, P. et al. Weak topological insulators induced by the interlayer coupling: A first-principles study of stacked Bi2TeI. Phys. Rev. B 89, 041409 (2014).

    Article  Google Scholar 

  20. von Schnering, H. G., von Benda, H. & Kalveram, C. Wismutmonojodid BiJ, eine Verbindung mit Bi(0) und Bi(II). Z. Anorg. Allg. Chem. 438, 37–52 (1978).

    Article  CAS  Google Scholar 

  21. Isaeva, A., Rasche, B. & Ruck, M. Bismuth-based candidates for topological insulators: Chemistry beyond Bi2Te3 . Phys. Status Solidi RRL 7, 39–49 (2013).

    Article  CAS  Google Scholar 

  22. Filatova, T. G. et al. Electronic structure, galvanomagnetic and magnetic properties of the bismuth subhalides Bi4I4 and Bi4Br4 . J. Solid State Chem. 180, 1103–1109 (2007).

    Article  CAS  Google Scholar 

  23. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  Google Scholar 

  24. Zhou, J.-J., Feng, W., Liu, C.-C., Guan, S. & Yao, Y. Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4 . Nano Lett. 14, 4767–4771 (2014).

    Article  CAS  Google Scholar 

  25. Vidal, J., Zhang, X., Yu, L., Luo, J. W. & Zunger, A. False-positive and false-negative assignments of topological insulators in density functional theory and hybrids. Phys. Rev. B 84, 041109 (2011).

    Article  Google Scholar 

  26. Hedin, L. & Lundqvist, S. in Solid State Physics Vol. 23 (eds Frederick, S. D. T. & Henry, E.) 1–181 (Academic, 1970).

    Google Scholar 

  27. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    Article  CAS  Google Scholar 

  28. Yazyev, O. V., Kioupakis, E., Moore, J. E. & Louie, S. G. Quasiparticle effects in the bulk and surface-state bands of Bi2Se3 and Bi2Te3 topological insulators. Phys. Rev. B 85, 161101 (2012).

    Article  Google Scholar 

  29. Nechaev, I. A. et al. Evidence for a direct band gap in the topological insulator Bi2Se3 from theory and experiment. Phys. Rev. B 87, 121111 (2013).

    Article  Google Scholar 

  30. Aguilera, I., Friedrich, C., Bihlmayer, G. & Blügel, S. GW study of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3: Beyond the perturbative one-shot approach. Phys. Rev. B 88, 045206 (2013).

    Article  Google Scholar 

  31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  32. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  33. Dal Corso, A. & Mosca Conte, A. Spin–orbit coupling with ultrasoft pseudopotentials: Application to Au and Pt. Phys. Rev. B 71, 115106 (2005).

    Article  Google Scholar 

  34. Deslippe, J. et al. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    Article  CAS  Google Scholar 

  35. Mostofi, A. A. et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  36. Umerski, A. Closed-form solutions to surface Green’s functions. Phys. Rev. B 55, 5266–5275 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. H. Dil, M. Ruck, M. Richter and K. Koepernik for fruitful discussions, H. Lee for discussions regarding the computational methodology, B. Kim for support during the beamtime on Merlin, M. Münch, K. Zechel and A. Weiz for assistance with synthesis and SEM/EDX measurements. We are grateful to E. Schmid for ultramicrotomy, to U. Kaiser and C. T. Koch for providing beam time for the TEM characterization. G.A. and O.V.Y. acknowledge support by the Swiss NSF (grant No. PP00P2_133552), ERC project ‘TopoMat’ (grant No. 306504) and NCCR-MARVEL. A.I. acknowledges the Priority Program 1666 ‘Topological Insulators’ of the Deutsche Forschungsgemeinschaft (DFG, grant No. IS 250/1-1). L.M. acknowledges support by the Swiss NSF (grant No. PA00P21-36420). The Advanced Light Source and the laser-based ARPES measurements, part of the Ultrafast Materials Program at Lawrence Berkeley National Laboratory, are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. W.V.d.B. acknowledges the Carl-Zeiss Foundation. Electronic structure calculations have been performed at the Swiss National Supercomputing Centre (CSCS) under project s515.

Author information

Authors and Affiliations

Authors

Contributions

O.V.Y. initiated and directed this research project; G.A. performed first-principles calculations; A.I. pointed out, synthesized and characterized the material; L.M. conducted the ARPES measurements, together with R.M. and W.Z. for the laser-based experiments; L.M., J.C.J. and M.G. analysed the ARPES data; A.P. and L.F. carried out the transport measurements; T.G.F. and A.N.K. performed and optimized sample preparation; W.V.d.B. assisted in the TEM experiments; Y.K., K.S.K., J.D.D., A.L., E.R. and A.B. assisted in the ARPES measurements and data analysis. All authors contributed to discussions and manuscript revision.

Corresponding author

Correspondence to Oleg V. Yazyev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Autès, G., Isaeva, A., Moreschini, L. et al. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4. Nature Mater 15, 154–158 (2016). https://doi.org/10.1038/nmat4488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing