Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards a calcium-based rechargeable battery


The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density1. For multivalent charge carriers (Mn+), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li+ (ref. 2). Whereas proof of concept has been achieved for magnesium3,4,5, the electrodeposition of calcium has so far been thought to be impossible6 and research has been restricted to non-rechargeable systems7,8,9,10. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrochemical characterization of the electrolytes.
Figure 2: Characterization of deposits obtained in 0.3 M Ca(BF4)2 EC:PC at −1.5 V versus Ca2+/Capassivated.
Figure 3: Analysis of the reversibility of the Ca plating/stripping process and stability of the SEI layer.

Similar content being viewed by others


  1. Muldoon, J. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014).

    Article  CAS  Google Scholar 

  2. Amatucci, G. G. et al. Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 148, A940–A950 (2001).

    Article  CAS  Google Scholar 

  3. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  CAS  Google Scholar 

  4. Yoo, H. D. et al. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  CAS  Google Scholar 

  5. Muldoon, J. et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5491–5950 (2012).

    Article  Google Scholar 

  6. Aurbach, D., Skaletsky, R. & Gofer, Y. The electrochemical behavior of calcium electrodes in a few organic electrolytes. J. Electrochem. Soc. 138, 3536–3545 (1991).

    Article  CAS  Google Scholar 

  7. Sammells, A. F. & Schumacher, B. Secondary calcium solid electrolyte high temperature battery. J. Electrochem. Soc. 133, 235–236 (1986).

    Article  CAS  Google Scholar 

  8. Staniewicz, R. J. A study of the calcium-thionyl chloride electrochemical system. J. Electrochem. Soc. 127, 782–789 (1980).

    Article  CAS  Google Scholar 

  9. Hayashi, M., Arai, H., Ohtsuka, H. & Sakurai, Y. Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119–121, 617–620 (2003).

    Article  Google Scholar 

  10. See, K. A. et al. A high capacity calcium primary cell based on the Ca–S system. Adv. Energy Mater. 3, 1056–1061 (2013).

    Article  CAS  Google Scholar 

  11. Lin, M. C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article  CAS  Google Scholar 

  12. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  13. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  14. Budevski, E., Staikov, G. & Lorenz, W. J. Electrochemical Phase Formation and Growth (VCH, 1996).

    Book  Google Scholar 

  15. Gofer, Y. et al. Improved electrolyte solutions for rechargeable magnesium batteries. Electrochem. Solid State Lett. 9, A257–A260 (2006).

    Article  CAS  Google Scholar 

  16. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  Google Scholar 

  17. Ponrouch, A. et al. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3, 22–42 (2015).

    Article  CAS  Google Scholar 

  18. Peled, E., Menahem, C., Bar Tow, D. & Melman, A. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 143, L4 (1996).

    Article  CAS  Google Scholar 

  19. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    Article  CAS  Google Scholar 

  20. Xu, K. & von Cresce, A. Interfacing electrolytes with electrodes in Li ion batteries. J. Mater. Chem. 21, 9849–9864 (2011).

    Article  CAS  Google Scholar 

  21. Ponrouch, A., Marchante, E., Courty, M., Tarascon, J. M. & Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5, 8572–8583 (2012).

    Article  CAS  Google Scholar 

  22. Nie, M. & Lucht, B. L. Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J. Electrochem. Soc. 161, A1001–A1006 (2014).

    Article  CAS  Google Scholar 

  23. Guyomard, D. & Tarascon, J. M. Li metal‐free rechargeable LiMn2O4/carbon cells: Their understanding and optimization. J. Electrochem. Soc. 139, 937–948 (1992).

    Article  CAS  Google Scholar 

  24. Sano, H., Senoh, H., Yao, M., Sakaebe, H. & Kiyobayashi, T. Mg2+ storage in organic positive-electrode active material based on 2,5-dimethoxy-1,4-benzoquinone. Chem. Lett. 41, 1594–1596 (2012).

    Article  CAS  Google Scholar 

  25. Fauth, F., Peral, I., Popescu, C. & Knapp, M. The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction 28, S360–S370 (2013).

    Article  CAS  Google Scholar 

  26. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

  27. Masson, O., Dooryhee, E., Cheary, R. W. & Fitch, A. N. The high resolution powder diffraction beam line at ESRF. Mater. Sci. Forum 132, 378–381 (2001).

    Google Scholar 

Download references


Authors are grateful to F. Fauth for his assistance during data collection at the ALBA Synchrotron. The authors thank the Toyota Battery Research division at Higashi Fuji (M6) for their financial support.

Author information

Authors and Affiliations



M.R.P. and F.B. conceived and coordinated the study, A.P. designed, performed and analysed the electrochemical experiments and C.F. analysed diffraction data. All authors discussed the results and A.P. and M.R.P. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to M. R. Palacín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponrouch, A., Frontera, C., Bardé, F. et al. Towards a calcium-based rechargeable battery. Nature Mater 15, 169–172 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing