Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Better thermoelectrics through glass-like crystals

A Correction to this article was published on 18 December 2015

This article has been updated

Twenty years ago, the 'phonon-glass, electron-crystal' concept changed thinking in thermoelectric materials research, resulting in new high-performance materials and an increased focus on controlling structure and chemical bonding to minimize irreversible heat transport in crystals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal transport in crystals, glasses and glass-like crystals.
Figure 2: Thermoelectric power factor (S2σ) as a function of thermal conductivity (κ) for selected bulk high performance thermoelectric materials at their respective temperatures of maximum ZT.

Change history

  • 26 November 2015

    In the version of the Commentary 'Better thermoelectrics through glass-like crystals' originally published (Nature Mater. 14, 1182–1185; 2015), in Fig. 2 the units on the y axis should have been 'µW cm-1 K-2'. Corrected in the online versions after print 26 November 2015.

References

  1. Nolas, G. S., Sharp, J. & Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments (Springer, 2001).

    Book  Google Scholar 

  2. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407 (CRC, 1995).

    Google Scholar 

  3. Altenkirch, E. Physikalische Zeitschrift 10, 560–580 (1909).

    CAS  Google Scholar 

  4. Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).

    Google Scholar 

  5. Goldsmid, H. J. Thermoelectric Refrigeration (Plenum, 1964).

    Book  Google Scholar 

  6. Morelli, D. T. & Meisner, G. P. J. Appl. Phys. 77, 3777–3781 (1995).

    Article  CAS  Google Scholar 

  7. Sales, B. C., Mandrus, D. & Williams, R. K. Science 272, 1325–1328 (1996).

    Article  CAS  Google Scholar 

  8. Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M. & Ehrlich, A. C. J. Appl. Phys. 79, 4002–4008 (1996).

    Article  CAS  Google Scholar 

  9. Uher, C. in Semiconductors and Semimetals Vol. 69 (ed. Tritt, T. M.) 139 (Academic, 2001).

    Google Scholar 

  10. Nolas, G. S., Cohn, J. L., Slack, G. A. & Schujmann, S. B. Appl. Phys. Lett. 73, 178–180 (1998).

    Article  CAS  Google Scholar 

  11. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H. & Slack, G. A. Phys. Rev. Lett. 82, 779 (1999).

    Article  CAS  Google Scholar 

  12. Nolas, G. S. (ed.) The Physics and Chemistry of Inorganic Clathrates (Springer, 2014).

    Book  Google Scholar 

  13. Shi, X. et al. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    Article  CAS  Google Scholar 

  14. Cahill, D. G., Watson, S. K. & Pohl, R. O. Phys. Rev. B 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

  15. Einstein, A. Ann. Phys. 35, 679–694 (1911).

    CAS  Google Scholar 

  16. Slack, G. A. in Solid State Physics Vol. 34, 1 (Academic Press, 1979).

    Google Scholar 

  17. Chiritescu, C. et al. Science 315, 351–353 (2007).

    Article  CAS  Google Scholar 

  18. Roufosse, M. C. & Klemens P. G. J. Geophys. Res. 79, 703–705 (1974).

    Article  Google Scholar 

  19. Mahan, G. D. & Sofo, J. O. Proc. Natl Acad. Sci. USA 93, 7436–7439 (1996).

    Article  CAS  Google Scholar 

  20. Slack, G. A. & Tsoukala, V. G. J. Appl. Phys. 76, 1665–1671 (1994).

    Article  CAS  Google Scholar 

  21. Braun, D. J. & Jeitschko, W. J. Less Common Met. 72, 147–156 (1980).

    Article  CAS  Google Scholar 

  22. Shi, X. et al. Adv. Funct. Mater. 20, 755–763 (2010).

    Article  CAS  Google Scholar 

  23. Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Chem. Mater. 18, 1873–1877 (2006).

    Article  CAS  Google Scholar 

  24. Zhao, L.-D. et al. Nature 508, 373–377 (2014).

    Article  CAS  Google Scholar 

  25. Yang, J. & Caillat, T. MRS Bulletin 31, 224–229 (2006).

    Article  CAS  Google Scholar 

  26. Salvador, J. R. et al. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014).

    Article  CAS  Google Scholar 

  27. Slack, G. A. Mater. Res. Soc. Symp. Proc. 478, 47–54 (1997).

    Article  CAS  Google Scholar 

  28. Takabatake, T., Suekuni, K. & Nakayama, T. Rev. Mod. Phys. 86, 669–716 (2014).

    Article  CAS  Google Scholar 

  29. Christensen, M. et al. Nature Mater. 7, 811–815 (2008).

    Article  CAS  Google Scholar 

  30. Meisner, G. P., Morelli, D. T., Hu, S., Yang, J. & Uher, C. Phys. Rev. Lett. 80, 3551–3554 (1998).

    Article  CAS  Google Scholar 

  31. Koza, M. K. et al. Nature Mater. 7, 805–810 (2008).

    Article  CAS  Google Scholar 

  32. Prokofiev, A. et al. Nature Mater. 12, 1096–1101 (2013).

    Article  CAS  Google Scholar 

  33. Tang, Y. et al. Nature Mater. 14, 1223–1228 (2015).

    Article  CAS  Google Scholar 

  34. Wells, A. F. Structural Inorganic Chemistry (Oxford Univ. Press, 1987).

    Google Scholar 

  35. Koumoto, K. et al. J. Am. Ceram. Soc. 96, 1–23 (2013).

    Article  CAS  Google Scholar 

  36. Skoug, E. J. & Morelli D. T. Phys. Rev. Lett. 107, 235901 (2011).

    Article  Google Scholar 

  37. Lai, W., Wang, Y., Morelli, D. T. & Lu, X. Adv. Funct. Mater. http://doi.org/f27zp2 (2015).

  38. Dong, Y. et al. ChemPhysChem http://doi.org/f3f5mt (2015).

  39. Nolas, G. S., Kaeser, M., Littleton, R. T. IV & Tritt, T. M. Appl. Phys. Lett. 77, 1855–1867 (2000).

    Article  CAS  Google Scholar 

  40. Chung, D. Y. et al. Science 287, 1024–1027 (2000).

    Article  CAS  Google Scholar 

  41. Martin, J., Wang, H. & Nolas, G. S. Appl. Phys. Lett. 92, 222110 (2008).

    Article  Google Scholar 

  42. Pei, Y. et al. Nature 473, 66–69 (2011).

    Article  CAS  Google Scholar 

  43. Snyder, G. J. & Toberer, E. S. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  44. Dresselhaus, M. S. et al. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  45. Heremans, J., Dresselhaus, M. S., Bell, L. E. & Morelli, D. T. Nature Nanotech. 8, 471–473 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.T.M. acknowledges support from the Center for Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001054. G.S.N. gratefully acknowledges the support of the US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under Award Number DE-FG02-04ER46145 for funding research on clathrates, and the II-VI Foundation for funding research on skutterudites.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matt Beekman, Donald T. Morelli or George S. Nolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beekman, M., Morelli, D. & Nolas, G. Better thermoelectrics through glass-like crystals. Nature Mater 14, 1182–1185 (2015). https://doi.org/10.1038/nmat4461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing