Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family


Topological Weyl semimetals (TWSs) represent a novel state of topological quantum matter1,2,3,4 which not only possesses Weyl fermions (massless chiral particles that can be viewed as magnetic monopoles in momentum space) in the bulk and unique Fermi arcs generated by topological surface states, but also exhibits appealing physical properties such as extremely large magnetoresistance and ultra-high carrier mobility5,6,7,8. Here, by performing angle-resolved photoemission spectroscopy (ARPES) on NbP and TaP, we directly observed their band structures with characteristic Fermi arcs of TWSs. Furthermore, by systematically investigating NbP, TaP and TaAs from the same transition metal monopnictide family, we discovered their Fermiology evolution with spin–orbit coupling (SOC) strength. Our experimental findings not only reveal the mechanism to realize and fine-tune the electronic structures of TWSs, but also provide a rich material base for exploring many exotic physical phenomena (for example, chiral magnetic effects, negative magnetoresistance, and the quantum anomalous Hall effect) and novel future applications3,4,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of TWSs and characterization of NbP/TaP single crystals.
Figure 2: Overall electronic structure of NbP.
Figure 3: Overall electronic structure of TaP.
Figure 4: Evolution of the band structure with SOC.

Similar content being viewed by others


  1. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  2. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  Google Scholar 

  3. Weng, H., Fang, C., Fang, Z., Bernevig, A. & Dai, X. Weyl semimetal phase in non-centrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  4. Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Commun. 6, 7373 (2015).

    Article  CAS  Google Scholar 

  5. Zhang, C. et al. Observation of the Adler–Bell–Jackiw chiral anomaly in a Weyl semimetal. Preprint at (2015).

  6. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal NbP. Nature Phys. 11, 645–649 (2015).

    Article  CAS  Google Scholar 

  7. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  8. Ghimire, N. J. et al. Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27, 152201 (2015).

    Article  CAS  Google Scholar 

  9. Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  Google Scholar 

  10. Zyuzin, A. A. & Burkov, A. A. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

    Article  Google Scholar 

  11. Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  CAS  Google Scholar 

  12. Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

    Article  Google Scholar 

  13. Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    Article  Google Scholar 

  14. Landsteiner, K. Anomalous transport of Weyl fermions in Weyl semimetals. Phys. Rev. B 89, 075124 (2014).

    Article  Google Scholar 

  15. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Commun. 5, 6161 (2014).

    Article  Google Scholar 

  16. Hosur, P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B 86, 195102 (2012).

    Article  Google Scholar 

  17. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Google Scholar 

  18. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  19. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nature Mater. 13, 677–681 (2014).

    Article  CAS  Google Scholar 

  20. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 4786 (2014).

    Article  Google Scholar 

  21. Burkov, A. A. & Balents, L. Weyl Semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  CAS  Google Scholar 

  22. Halász, G. B. & Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

    Article  Google Scholar 

  23. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  24. Lv, B. Q. et al. Discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  25. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nature Phys. 11, 728–732 (2015).

    Article  CAS  Google Scholar 

  26. Xu, J. et al. Crystal structure, electrical transport, and magnetic properties of niobium monophosphide. Inorg. Chem. 35, 845–849 (1996).

    Article  CAS  Google Scholar 

  27. Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

    Article  Google Scholar 

Download references


Y.L.C. acknowledges support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). C.F. and B.Y. acknowledge financial support by the Deutsche Forschungsgemeinschaft DFG (Project No.EB 518/1-1 of DFG-SPP 1666 ‘Topological Insulators’) and by the ERC Advanced Grant (No. 291472 ‘Idea Heusler’). Advanced Light Source is operated by Department of Energy, Office of Basic Energy Science (contract DE-AC02-05CH11231).

Author information

Authors and Affiliations



Y.L.C. conceived the experiments; Z.K.L. and L.X.Y. carried out ARPES measurements with the assistance of T.Z., H.P., H.F.Y., C.C., Y.Z. and S.-K.M.; D.P., M.S. and Y.F.G. synthesized and characterized the bulk single crystals; B.Y. and Y.S. performed ab initio calculations. All authors contributed to the scientific planning and discussions.

Corresponding author

Correspondence to Y. L. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, L., Sun, Y. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nature Mater 15, 27–31 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing