Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals


Three-dimensional (3D) Dirac semimetals, which possess 3D linear dispersion in the electronic structure as a bulk analogue of graphene, have lately generated widespread interest in both materials science and condensed matter physics1,2. Recently, crystalline Cd3As2 has been proposed and proved to be a 3D Dirac semimetal that can survive in the atmosphere3,4,5,6,7,8,9. Here, by using point contact spectroscopy measurements, we observe exotic superconductivity around the point contact region on the surface of Cd3As2 crystals. The zero-bias conductance peak (ZBCP) and double conductance peaks (DCPs) symmetric around zero bias suggest p-wave-like unconventional superconductivity. Considering the topological properties of 3D Dirac semimetals, our findings may indicate that Cd3As2 crystals under certain conditions could be topological superconductors10,11,12,13, which are predicted to support Majorana zero modes or gapless Majorana edge/surface modes in the boundary depending on the dimensionality of the material14,15,16,17.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transport measurements of Cd3As2 (S1).
Figure 2: Superconducting features in S1 at a PC resistance of 7.5 Ω.
Figure 3: Transport results of another Cd3As2 sample (S2).
Figure 4: Topological phase diagram for superconducting Cd3As2.


  1. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    CAS  Article  Google Scholar 

  2. Wang, Z. J., Weng, H. M., Wu, Q. S., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  3. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nature Mater. 13, 677–681 (2014).

    CAS  Article  Google Scholar 

  4. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    CAS  Article  Google Scholar 

  5. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  Google Scholar 

  6. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 . Nature Mater. 13, 851–856 (2014).

    CAS  Article  Google Scholar 

  7. He, L. P. et al. Quantum transport in the three-dimensional Dirac semimetal Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

    CAS  Article  Google Scholar 

  8. Tian, L. et al. Ultrahigh mobility and giant magnetoresistance in Cd3As2: Protection from backscattering in a Dirac semimetal. Nature Mater. 14, 280–284 (2015).

    Article  Google Scholar 

  9. Zhao, Y. F. et al. Anisotropic Fermi surface and quantum limit transport in high mobility 3D Dirac semimetal Cd3As2 . Phys. Rev. X 5, 031037 (2015).

    Google Scholar 

  10. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  11. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  12. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  13. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: Ten-fold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

    Article  Google Scholar 

  14. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    CAS  Article  Google Scholar 

  15. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    Article  Google Scholar 

  16. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    CAS  Article  Google Scholar 

  17. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  18. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    CAS  Article  Google Scholar 

  19. Alicea, J., Oreg, Y., Refael, G., Oppen, F. v. & Fisher, M. P. A. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nature Phys. 7, 412–417 (2011).

    CAS  Article  Google Scholar 

  20. Hor, Y. S. et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010).

    CAS  Article  Google Scholar 

  21. Wray, L. A. et al. Observation of topological order in a superconducting doped topological insulator. Nature Phys. 6, 855–859 (2010).

    CAS  Article  Google Scholar 

  22. Sasaki, S. et al. Topological superconductivity in CuxBi2Se3 . Phys. Rev. Lett. 107, 217001 (2011).

    Article  Google Scholar 

  23. Levy, N. et al. Experimental evidence for s-wave pairing symmetry in superconducting CuxBi2Se3 single crystals using a scanning tunneling microscope. Phys. Rev. Lett. 110, 117001 (2013).

    Article  Google Scholar 

  24. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    CAS  Article  Google Scholar 

  25. Deng, M. T. et al. Observation of Majorana fermions in a Nb-InSb nanowire-Nb hybrid quantum device. Nano Lett. 12, 6414–6419 (2012).

    CAS  Article  Google Scholar 

  26. Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Phys. 8, 887–895 (2012).

    CAS  Article  Google Scholar 

  27. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Article  Google Scholar 

  28. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    CAS  Article  Google Scholar 

  29. Laube, F., Goll, G., Löhneysen, H. v., Fogelström, M. & Lichtenberg, F. Spin-triplet superconductivity in Sr2RuO4 probed by Andreev reflection. Phys. Rev. Lett. 84, 1595–1598 (2000).

    CAS  Article  Google Scholar 

  30. Kashiwaya, S., Kashiwaya, H., Saitoh, K., Mawatari, Y. & Tanaka, Y. Tunneling spectroscopy of topological superconductors. Physica E 55, 25–29 (2014).

    CAS  Article  Google Scholar 

  31. Kashiwaya, S. & Tanaka, Y. Tunneling effects on surface bound states in unconventional superconductors. Rep. Prog. Phys. 63, 1641–1724 (2000).

    CAS  Article  Google Scholar 

  32. Sheet, G., Mukhopadhyay, S. & Raychaudhuri, P. Role of critical current on the point-contact Andreev reflection spectra between a normal metal and a superconductor. Phys. Rev. B 69, 134507 (2004).

    Article  Google Scholar 

  33. Aggarwal, L. et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2 . Nature Mater. (2015).

  34. Daghero, D. & Gonnelli, R. S. Probing multiband superconductivity by point-contact spectroscopy. Supercond. Sci. Technol. 23, 043001 (2010).

    Article  Google Scholar 

  35. Deutscher, G. Andreev–Saint-James reflections: A probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).

    CAS  Article  Google Scholar 

  36. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    CAS  Article  Google Scholar 

Download references


We acknowledge C. Zhang, F. Yang, Y. Xing and Y. Liu for help with experiments. This work was financially supported by the National Basic Research Program of China (Grant Nos. 2013CB934600, 2015CB921102, 2012CB921300, 2012CB927400), the National Natural Science Foundation of China (Nos. 11222434, 11174007, 11534001, 11574008), and the Research Fund for the Doctoral Program of Higher Education (RFDP) of China.

Author information

Authors and Affiliations



J.Wang and J.Wei conceived the experiments. He Wang, Huichao Wang and W.Y. carried out transport measurements. Haiwen Liu, X.-J.L. and X.C.X. performed the theoretical interpretation. Hong Lu and S.J. grew the crystals.

Corresponding authors

Correspondence to Xiong-Jun Liu, Jian Wei or Jian Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 756 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H., Liu, H. et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nature Mater 15, 38–42 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing