Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments


To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell–matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A new approach to engineering fibrillar microenvironments with tunable mechanical and architectural features.
Figure 2: Synthetic fibre networks induce similar topographical and mechanical interactions with cells to collagen matrices at multiple length scales.
Figure 3: Increasing fibre stiffness suppresses cell spreading and proliferation.
Figure 4: Lower fibre and network stiffness enables cell-mediated reorganization of the material and clustering of adhesive ligands local to the cell.
Figure 5: Fibrillar ECM remodelling promotes FA formation and FAK phosphorylation to increase proliferation.


  1. 1

    Discher, D. E., Janmey, P. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  2. 2

    Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: A growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009).

    CAS  Google Scholar 

  3. 3

    Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Google Scholar 

  5. 5

    Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Google Scholar 

  6. 6

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  7. 7

    Engler, A. et al. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86, 617–628 (2004).

    CAS  Google Scholar 

  8. 8

    Pedersen, J. A. & Swartz, M. A. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005).

    Google Scholar 

  9. 9

    Pathak, A. & Kumar, S. Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integr. Biol. 3, 267–278 (2011).

    CAS  Google Scholar 

  10. 10

    Baker, B. M. & Chen, C. S. Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  11. 11

    Van Dijk-Wolthuis, W. N. E. et al. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules 28, 6317–6322 (1995).

    CAS  Google Scholar 

  12. 12

    Yang, L. et al. Micromechanical bending of single collagen fibrils using atomic force microscopy. J. Biomed. Mater. Res. 82A, 160–168 (2007).

    CAS  Google Scholar 

  13. 13

    Kluge, D., Abraham, F., Schmidt, S., Schmidt, H.-W. & Fery, A. Nanomechanical properties of supramolecular self-assembled whiskers determined by AFM force mapping. Langmuir 26, 3020–3023 (2010).

    CAS  Google Scholar 

  14. 14

    Guthold, M. et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys. 49, 165–181 (2007).

    CAS  Google Scholar 

  15. 15

    Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    CAS  Google Scholar 

  16. 16

    Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple–helical) collagens. J. Biol. Chem. 275, 35–40 (2000).

    CAS  Google Scholar 

  17. 17

    Konitsiotis, A. D. et al. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J. Biol. Chem. 283, 6861–6868 (2008).

    CAS  Google Scholar 

  18. 18

    Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551 (1998).

    CAS  Google Scholar 

  19. 19

    Klotzsch, E. et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl Acad. Sci. USA 106, 18267–18272 (2009).

    CAS  Google Scholar 

  20. 20

    Grinnell, F., Ho, C.-H., Tamariz, E., Lee, D. J. & Skuta, G. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 14, 384–395 (2003).

    CAS  Google Scholar 

  21. 21

    Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  22. 22

    Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).

    CAS  Google Scholar 

  23. 23

    Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Google Scholar 

  24. 24

    Hakkinen, K. M., Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. Part A 17, 713–724 (2010).

    Google Scholar 

  25. 25

    Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol. 12, 598–604 (2010).

    CAS  Google Scholar 

  26. 26

    Kubow, K. E. & Horwitz, A. R. Reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biol. 13, 5–7 (2011).

    Google Scholar 

  27. 27

    Stopak, D. & Harris, A. K. Connective tissue morphogenesis by fibroblast traction: I. Tissue culture observations. Dev. Biol. 90, 383–398 (1982).

    CAS  Google Scholar 

  28. 28

    Ma, X. et al. Fibers in the extracellular matrix enable long-range stress transmission between cells. Biophys. J. 104, 1410–1418 (2013).

    CAS  Google Scholar 

  29. 29

    Guo, C.-L. et al. Long-range mechanical force enables self-assembly of epithelial tubular patterns. Proc. Natl Acad. Sci. USA 109, 5576–5582 (2012).

    CAS  Google Scholar 

  30. 30

    Shi, Q. et al. Rapid disorganization of mechanically interacting systems of mammary acini. Proc. Natl Acad. Sci. USA 111, 658–663 (2014).

    CAS  Google Scholar 

  31. 31

    Provenzano, P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Google Scholar 

  32. 32

    Grinnell, F. & Lamke, C. R. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 66, 51–63 (1984).

    CAS  Google Scholar 

  33. 33

    Tomasek, J. J., Haaksma, C. J., Eddy, R. J. & Vaughan, M. B. Fibroblast contraction occurs on release of tension in attached collagen lattices: Dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232, 359–368 (1992).

    CAS  Google Scholar 

  34. 34

    Kolodney, M. S. & Elson, E. L. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268, 23850–23855 (1993).

    CAS  Google Scholar 

  35. 35

    Mih, J. D., Marinkovic, A., Liu, F., Sharif, A. S. & Tschumperlin, D. J. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci. 125, 5974–5983 (2012).

    CAS  Google Scholar 

  36. 36

    Wang, H.-B., Dembo, M. & Wang, Y.-L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Phys. 279, C1345–C1350 (2000).

    CAS  Google Scholar 

  37. 37

    Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E. & Kurisawa, M. The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31, 8608–8616 (2010).

    CAS  Google Scholar 

  38. 38

    Cavalcanti-Adam, E. A. et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92, 2964–2974 (2007).

    CAS  Google Scholar 

  39. 39

    Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    CAS  Google Scholar 

  40. 40

    Yang, M. T., Sniadecki, N. J. & Chen, C. S. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19, 3119–3123 (2007).

    CAS  Google Scholar 

  41. 41

    Balaban, N. Q. et al. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    CAS  Google Scholar 

  42. 42

    Chen, C. S., Alonso, J. L., Ostuni, E., Whitesides, G. M. & Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003).

    CAS  Google Scholar 

  43. 43

    Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    CAS  Google Scholar 

  44. 44

    Slack-Davis, J. K. et al. Cellular characterization of a novel focal adhesion kinase inhibitor. J. Biol. Chem. 282, 14845–14852 (2007).

    CAS  Google Scholar 

  45. 45

    Houseman, B. T. & Mrksich, M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 22, 943–955 (2001).

    CAS  Google Scholar 

  46. 46

    Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chem. Phys. Chem. 5, 383–388 (2004).

    CAS  Google Scholar 

  47. 47

    Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nature Commun. 6, 6365 (2015).

    CAS  Google Scholar 

  48. 48

    Fratzl, P. Collagen: Structure and Mechanics (Springer Science and Business Media, 2008).

    Google Scholar 

  49. 49

    Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    CAS  Google Scholar 

  50. 50

    Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nature Mater. 13, 631–637 (2014).

    CAS  Google Scholar 

  51. 51

    Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88, 39–48 (1997).

    CAS  Google Scholar 

  52. 52

    Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature Methods 7, 733–736 (2010).

    CAS  Google Scholar 

  53. 53

    Sander, E. A., Stylianopoulos, T., Tranquillo, R. T. & Barocas, V. H. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl Acad. Sci. USA 106, 17675–17680 (2009).

    CAS  Google Scholar 

  54. 54

    Abhilash, A. S., Baker, B. M., Trappmann, B., Chen, C. S. & Shenoy, V. B. Remodeling of fibrous extracellular matrices by contractile cells: Predictions from discrete fiber network simulations. Biophys. J. 107, 1829–1840 (2014).

    CAS  Google Scholar 

  55. 55

    Walcott, S. & Sun, S. X. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl Acad. Sci. USA 107, 7757–7762 (2010).

    CAS  Google Scholar 

  56. 56

    Besser, A. & Safran, S. A. Force-induced adsorption and anisotropic growth of focal adhesions. Biophys. J. 90, 3469–3484 (2006).

    CAS  Google Scholar 

  57. 57

    Kidoaki, S., Kwon, I. K. & Matsuda, T. Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. 76B, 219–229 (2006).

    CAS  Google Scholar 

  58. 58

    Kuntz, R. M. & Saltzman, W. M. Neutrophil motility in extracellular matrix gels: Mesh size and adhesion affect speed of migration. Biophys. J. 72, 1472–1480 (1997).

    CAS  Google Scholar 

Download references


This work was supported in part by grants from the National Institutes of Health (grant numbers EB000262, EB001046, HL115553, GM74048, AR056624) and Center for Engineering Cells and Regeneration of the University of Pennsylvania. B.M.B. acknowledges financial support from a Ruth L. Kirschstein National Research Service Award (EB014691) and NIH Pathway to Independence Award (HL124322). We would like to thank N. Wang for helpful discussions. We would also like to acknowledge support from the Penn Regional Nanotechnology Facility and the BME Core Facilities at Boston University.

Author information




B.M.B., B.T., J.A.B. and C.S.C. designed the materials. B.M.B., B.T. and C.S.C. designed the experiments. B.M.B., B.T., W.Y.W., M.S.S. and I.L.K. conducted experiments and analysed data. V.B.S. helped with analysis and interpretation of mechanical testing data. B.M.B., B.T. and C.S.C. wrote the manuscript.

Corresponding authors

Correspondence to Brendon M. Baker or Christopher S. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4049 kb)

Supplementary Information

Supplementary Movie 1 (AVI 5235 kb)

Supplementary Information

Supplementary Movie 2 (AVI 8964 kb)

Supplementary Information

Supplementary Movie 3 (AVI 9476 kb)

Supplementary Information

Supplementary Movie 4 (AVI 13828 kb)

Supplementary Information

Supplementary Movie 5 (AVI 16132 kb)

Supplementary Information

Supplementary Movie 6 (AVI 13703 kb)

Supplementary Information

Supplementary Movie 7 (AVI 3102 kb)

Supplementary Information

Supplementary Movie 8 (AVI 826 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baker, B., Trappmann, B., Wang, W. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nature Mater 14, 1262–1268 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing