Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes

Abstract

Direct electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron–device contact. Here, we demonstrate the realization of a three-dimensional macroporous nanoelectronic brain probe that combines ultra-flexibility and subcellular feature sizes to overcome these limitations. Built-in strains controlling the local geometry of the macroporous devices are designed to optimize the neuron/probe interface and to promote integration with the brain tissue while introducing minimal mechanical perturbation. The ultra-flexible probes were implanted frozen into rodent brains and used to record multiplexed local field potentials and single-unit action potentials from the somatosensory cortex. Significantly, histology analysis revealed filling-in of neural tissue through the macroporous network and attractive neuron–probe interactions, consistent with long-term biocompatibility of the device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macroporous nanoelectronic 3D neural probes.
Figure 2: Probe preparation and robustness.
Figure 3: Neural activity recording from rodent models.
Figure 4: Implanted macroporous nanoelectronic probe–tissue histology.

Similar content being viewed by others

References

  1. Alivisatos, A. P. et al. Neuroscience. The brain activity map. Science 339, 1284–1285 (2013).

    Article  CAS  Google Scholar 

  2. Birmingham, K. et al. Bioelectronic medicines: A research roadmap. Nature Rev. Drug Discov. 13, 399–400 (2014).

    Article  CAS  Google Scholar 

  3. Shen, H. Neurotechnology: BRAIN storm. Nature 503, 26–28 (2013).

    Article  CAS  Google Scholar 

  4. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  Google Scholar 

  5. Olsen, S. R., Bortone, D. S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    Article  CAS  Google Scholar 

  6. Mizuseki, K., Diba, K., Pastalkova, E. & Buzsaki, G. Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neurosci. 14, 1174–1181 (2011).

    Article  CAS  Google Scholar 

  7. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    Article  CAS  Google Scholar 

  8. Nicolelis, M. A. Actions from thoughts. Nature 409, 403–407 (2001).

    Article  CAS  Google Scholar 

  9. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  Google Scholar 

  10. Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).

    Article  CAS  Google Scholar 

  11. Seymour, J. P. & Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594–3607 (2007).

    Article  CAS  Google Scholar 

  12. Kozai, T. D. & Kipke, D. R. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods 184, 199–205 (2009).

    Article  CAS  Google Scholar 

  13. HajjHassan, M., Chodavarapu, V. & Musallam, S. NeuroMEMS: Neural Probe Microtechnologies. Sensors 8, 6704–6726 (2008).

    Article  CAS  Google Scholar 

  14. Kozai, T. D. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nature Mater. 11, 1065–1073 (2012).

    Article  CAS  Google Scholar 

  15. Seymour, J. P. & Kipke, D. R. Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 4606–4609 (2006).

    Article  Google Scholar 

  16. Kim, T. I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  17. Sohal, H. S. et al. The sinusoidal probe: A new approach to improve electrode longevity. Front. Neuroeng. 7, 10 (2014).

    Article  Google Scholar 

  18. Nicolelis, M. A. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003).

    Article  CAS  Google Scholar 

  19. Rousche, P. J. & Normann, R. A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 82, 1–15 (1998).

    Article  CAS  Google Scholar 

  20. Kipke, D. R., Vetter, R. J., Williams, J. C. & Hetke, J. F. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 151–155 (2003).

    Article  Google Scholar 

  21. Miller, K., Chinzei, K., Orssengo, G. & Bednarz, P. Mechanical properties of brain tissue in-vivo: Experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000).

    Article  CAS  Google Scholar 

  22. Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10, 036004 (2013).

    Article  Google Scholar 

  23. Biran, R., Martin, D. C. & Tresco, P. A. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J. Biomed. Mater. Res. A 82, 169–178 (2007).

    Article  Google Scholar 

  24. Dickey, A. S., Suminski, A., Amit, Y. & Hatsopoulos, N. G. Single-unit stability using chronically implanted multielectrode arrays. J. Neurophysiol. 102, 1331–1339 (2009).

    Article  Google Scholar 

  25. Jackson, A. & Fetz, E. E. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J. Neurophysiol. 98, 3109–3118 (2007).

    Article  Google Scholar 

  26. Tee, B. C., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–832 (2012).

    Article  CAS  Google Scholar 

  27. Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    Article  CAS  Google Scholar 

  28. Jeong, J. W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

    Article  CAS  Google Scholar 

  29. Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotech. 8, 83–94 (2013).

    Article  CAS  Google Scholar 

  30. Kruskal, P. B., Jiang, Z., Gao, T. & Lieber, C. M. Beyond the patch clamp: Nanotechnologies for intracellular recording. Neuron 86, 21–24 (2015).

    Article  CAS  Google Scholar 

  31. Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 11, 986–994 (2012).

    Article  CAS  Google Scholar 

  32. Liu, J. et al. Syringe-injectable electronics. Nature Nanotech. 10, 629–636 (2015).

    Article  CAS  Google Scholar 

  33. Liu, J. et al. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl Acad. Sci. USA 110, 6694–6699 (2013).

    Article  CAS  Google Scholar 

  34. Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81–89 (2005).

    Article  Google Scholar 

  35. Rousche, P. J. et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48, 361–371 (2001).

    Article  CAS  Google Scholar 

  36. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  CAS  Google Scholar 

  37. Sharp, A. A., Ortega, A. M., Restrepo, D., Curran-Everett, D. & Gall, K. In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans. Biomed. Eng. 56, 45–53 (2009).

    Article  Google Scholar 

  38. Petersen, C. C. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    Article  CAS  Google Scholar 

  39. Boulton, A. A., Baker, G. B. & Vanderwolf, C. H. Neurophysiological Techniques (Humana Press, 1990).

    Book  Google Scholar 

  40. Sheeba, J. H., Stefanovska, A. & McClintock, P. V. Neuronal synchrony during anesthesia: A thalamocortical model. Biophys. J. 95, 2722–2727 (2008).

    Article  CAS  Google Scholar 

  41. Kajikawa, Y. & Schroeder, C. E. How local is the local field potential? Neuron 72, 847–858 (2011).

    Article  CAS  Google Scholar 

  42. Stratton, P. et al. Action potential waveform variability limits multi-unit separation in freely behaving rats. PLoS ONE 7, e38482 (2012).

    Article  CAS  Google Scholar 

  43. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Tian for help and discussions on animal surgeries. This study was supported by Air Force Office of Scientific Research and NSSEFF awards (C.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.X., J.L. and C.M.L. conceived the idea and designed the experiments. C.X., J.L., T.-M.F., X.D. and W.Z. performed the experiments and analyses. C.X. and C.M.L. wrote the manuscript. All authors discussed the results, interpreted the findings and reviewed the manuscript.

Corresponding authors

Correspondence to Chong Xie, Jia Liu, Tian-Ming Fu or Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1953 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3977 kb)

Supplementary Information

Supplementary Movie 2 (MOV 5204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Liu, J., Fu, TM. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nature Mater 14, 1286–1292 (2015). https://doi.org/10.1038/nmat4427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing