Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

Abstract

In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal–ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal–ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model materials systems with orthogonally tunable mechanical temporal hierarchy.
Figure 2: Rheological properties of single metal-ion hydrogels.
Figure 3: Hierarchical mechanics of double metal-ion coordinate networks.
Figure 4: Relative contributions of slow and fast relaxation modes in double metal-ion hydrogels.
Figure 5: The effects of temporal mechanical hierarchy in systems beyond model 4PEG-His hydrogels.

Similar content being viewed by others

References

  1. Shaw, M. T. & MacKnight, W. J. Introduction to Polymer Viscoelasticity 3rd edn (Wiley-Interscience, 2005).

    Book  Google Scholar 

  2. Kopecek, J. Hydrogel biomaterials: A smart future? Biomaterials 28, 5185–5192 (2007).

    Article  CAS  Google Scholar 

  3. Thiele, J., Ma, Y., Bruekers, S. M. C., Ma, S. & Huck, W. T. S. 25th anniversary article: Designer hydrogels for cell cultures: A materials selection guide. Adv. Mater. 26, 125–148 (2013).

    Article  Google Scholar 

  4. Henderson, K. J., Zhou, T. C., Otim, K. J. & Shull, K. R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43, 6193–6201 (2010).

    Article  CAS  Google Scholar 

  5. Gong, J., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  6. Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  7. Hao, J. & Weiss, R. Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. Polymer 54, 2174–2182 (2013).

    Article  CAS  Google Scholar 

  8. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article  CAS  Google Scholar 

  9. Mozhdehi, D., Ayala, S., Cromwell, O. R. & Guan, Z. Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc. 136, 16128–16131 (2014).

    Article  CAS  Google Scholar 

  10. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

    Google Scholar 

  11. Holten-Andersen, N., Fantner, G. E., Hohlbauch, S., Waite, J. H. & Zok, F. W. Protective coatings on extensible biofibres. Nature Mater. 6, 669–672 (2007).

    Article  CAS  Google Scholar 

  12. Harrington, M. J., Masic, A., Holten-Andersen, N., Waite, J. H. & Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 328, 216–220 (2010).

    Article  CAS  Google Scholar 

  13. Yount, W. C., Juwarker, H. & Craig, S. L. Orthogonal control of dissociation dynamics relative to thermodynamics in a main-chain reversible polymer. J. Am. Chem. Soc. 125, 15302–15303 (2003).

    Article  CAS  Google Scholar 

  14. Yount, W. C., Loveless, D. M. & Craig, S. L. Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 44, 2746–2748 (2005).

    Article  CAS  Google Scholar 

  15. Fullenkamp, D. E., He, L., Barrett, D. G., Burghardt, W. R. & Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 46, 1167–1174 (2013).

    Article  CAS  Google Scholar 

  16. Holten-Andersen, N. et al. Metal-coordination: Using one of nature’s tricks to control soft material mechanics. J. Mater. Chem. B 2, 2467–2472 (2014).

    Article  CAS  Google Scholar 

  17. Holten-Andersen, N. et al. pH-induced metal–ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011).

    Article  CAS  Google Scholar 

  18. Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl Acad. Sci. USA 103, 12999–13003 (2006).

    Article  CAS  Google Scholar 

  19. Menyo, M. S., Hawker, C. J. & Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9, 10314–10323 (2013).

    Article  CAS  Google Scholar 

  20. Loveless, D. M., Jeon, S. L. & Craig, S. L. Rational control of viscoelastic properties in multicomponent associative polymer networks. Macromolecules 38, 10171–10177 (2005).

    Article  CAS  Google Scholar 

  21. Yang, C. H. et al. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 5, 10418–10422 (2013).

    Article  CAS  Google Scholar 

  22. Mckinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

    Article  CAS  Google Scholar 

  23. Rubinstein, M. & Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules 34, 1058–1068 (2001).

    Article  CAS  Google Scholar 

  24. Jongschaap, R. J. J., Wientjes, R. H. W., Duits, M. H. G. & Mellema, J. A generalized transient network model for associative polymer networks. Macromolecules 34, 1031–1038 (2001).

    Article  CAS  Google Scholar 

  25. Sing, M. K., Wang, Z.-G., McKinley, G. H. & Olsen, B. D. Celebrating Soft Matter’s 10th Anniversary: Chain configuration and rate-dependent mechanical properties in transient networks. Soft Matter 11, 2085–2096 (2015).

    Article  CAS  Google Scholar 

  26. Ferry, J. D. Viscoelastic Properties of Polymers 3rd edn (Wiley, 1980).

    Google Scholar 

  27. Honerkamp, J. & Weese, J. Determination of the relaxation spectrum by a regularization method. Macromolecules 22, 4372–4377 (1989).

    Article  CAS  Google Scholar 

  28. Stadler, F. J. & Bailly, C. A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol. Acta 48, 33–49 (2008).

    Article  Google Scholar 

  29. McDougall, I., Orbey, N. & Dealy, J. M. Inferring meaningful relaxation spectra from experimental data. J. Rheol. 58, 779–797 (2014).

    Article  CAS  Google Scholar 

  30. Sjöberg, S. Critical evaluation of stability constants of metal-imidazole and metal-histamine systems. Pure Appl. Chem. 69, 1549–1570 (1997).

    Article  Google Scholar 

  31. Annable, T., Buscall, R., Ettelaie, R. & Whittlestone, D. The rheology of solutions of associating polymers: Comparison of experimental behavior with transient network theory. J. Rheol. 37, 695–726 (1993).

    Article  CAS  Google Scholar 

  32. Sever, M. J. & Wilker, J. J. Visible absorption spectra of metal-catecholate and metal-tironate complexes. Dalton Trans. 1061–1072 (2004).

  33. Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008).

    Article  CAS  Google Scholar 

  34. Bae, J.-E., Cho, K. S., Seo, K. H. & Kang, D.-G. Application of geometric algorithm of time–temperature superposition to linear viscoelasticity of rubber compounds. Korea-Aust. Rheol. J. 23, 81–87 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

S.C.G. was supported by the Anne M. Mayes Fellowship. S.C.G. and N.H.-A. were supported by the MRSEC programme of the National Science Foundation under award number DMR—0819762 and DMR-1419807. N.H.-A. was supported by the MIT Sea Grant via the Doherty Professorship in Ocean Utilization. D.G.B., J.C. and P.B.M. were supported by the National Institutes of Health under award number R37DE014193. D.M. and Z.G. were supported by the US Department of Energy, Division of Materials Sciences, under award number DE-FG02-04ER46162.

Author information

Authors and Affiliations

Authors

Contributions

S.C.G. and N.H.-A. designed the study, conducted the analysis and prepared the manuscript. S.C.G. and R.L. synthesized hydrogels and conducted experiments. D.M., Z.G., J.C., D.G.B. and P.B.M. synthesized materials and provided discussion.

Corresponding author

Correspondence to Niels Holten-Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grindy, S., Learsch, R., Mozhdehi, D. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nature Mater 14, 1210–1216 (2015). https://doi.org/10.1038/nmat4401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing