Article | Published:

Conductivity in organic semiconductors hybridized with the vacuum field

Nature Materials volume 14, pages 11231129 (2015) | Download Citation

Abstract

Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea, organic semiconductors were strongly coupled to plasmonic modes to form coherent states that can extend over as many as 105 molecules and should thereby favour conductivity. Experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility. A theoretical quantum model confirms the delocalization of the wavefunctions of the hybridized states and its effect on the conductivity. Our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    in Fundamental Systems in Quantum Optics (eds Dalibard, J., Raimond, J. M. & Zinn-Justin, J.) (North Holland, 1992).

  2. 2.

    Early stage of continuous wave experiments on cavity-polaritons. Phys. Status Solidi B 242, 2167–2196 (2005).

  3. 3.

    et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon. 7, 128–132 (2013).

  4. 4.

    & Surface polariton spectra if the resonance with the transition layer vibrations exist. Opt. Commun. 11, 169–171 (1974).

  5. 5.

    & To the theory of surface plasmon–polaritons on metals covered with resonant thin films. Opt. Commun. 332, 201–205 (2014).

  6. 6.

    , , & Reversible switching of ultra-strong coupling. Phys. Rev. Lett. 106, 196405 (2011).

  7. 7.

    , & Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).

  8. 8.

    , , , & Modifying chemical landscapes by coupling to the vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

  9. 9.

    et al. Tuning the work-function via strong coupling. Adv. Mater. 25, 2481–2485 (2013).

  10. 10.

    et al. Thermodynamics of molecules strongly coupled to the vacuum field. Angew. Chem. Int. Ed. 52, 10533–10536 (2013).

  11. 11.

    et al. Coherent emission from a disordered organic semiconductor induced by strong coupling to surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

  12. 12.

    , & Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1490–1537 (2010).

  13. 13.

    et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  14. 14.

    & Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

  15. 15.

    et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).

  16. 16.

    et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).

  17. 17.

    , , , & Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).

  18. 18.

    et al. Electrically injected cavity polaritons. Phys. Rev. Lett. 100, 136806 (2008).

  19. 19.

    & Quantum theory of electron tunneling into intersubband cavity polariton states. Phys. Rev. B 79, 075317 (2009).

  20. 20.

    , , , & Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).

  21. 21.

    , , , & A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2013).

  22. 22.

    , , & Solid state electrically inject exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

  23. 23.

    et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

  24. 24.

    , , , & Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

  25. 25.

    et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 112, 153002 (2014).

  26. 26.

    , , , & Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH). Chem. Commun. 16, 578–580 (1977).

  27. 27.

    & Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

  28. 28.

    et al. Light emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

  29. 29.

    , & Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000).

  30. 30.

    The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

  31. 31.

    , & Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films. Polym. Sci. Polym. Phys. 41, 2529–2548 (2003).

  32. 32.

    , , & Charge transport physics of conjugated polymer field-effect transistors. Adv. Mater. 22, 3893–3898 (2010).

  33. 33.

    , , , & Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110, 3–24 (2010).

  34. 34.

    et al. A high mobility electron transporting polymer for printed transistors. Nature 457, 679–687 (2009).

  35. 35.

    et al. High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4:9,10-bis (dicarboximides). Angew. Chem. Int. Ed. 116, 6523–6526 (2004).

  36. 36.

    , , & Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007).

  37. 37.

    , , , & Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

  38. 38.

    , & Influence of material properties on extraordinary optical transmission through hole arrays. Phys. Rev. B 77, 075401 (2008).

  39. 39.

    , & Long vs. short-range orders in random subwavelength hole arrays. Opt. Express 20, 4697–4709 (2012).

  40. 40.

    , , & Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).

  41. 41.

    , & Fifty years of Anderson localization. Phys. Today 62, 24–29 (August, 2009).

  42. 42.

    & Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

  43. 43.

    , , & Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114, 196403 (2015).

  44. 44.

    How to suppress the backscattering of conduction electrons? Europhys. Lett. 107, 57003 (2014).

  45. 45.

    , , & Transport properties of a two-dimensional electron gas dressed by light. Phys. Rev. B 91, 155312 (2015).

  46. 46.

    et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

  47. 47.

    et al. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci. 7, 2939–2943 (2014).

Download references

Acknowledgements

This work was supported in part by USIAS, the ERC through the projects Plasmonics (227557), Suprafunction (257305), and Coldsim (307688), the International Center for Frontier Research in Chemistry (icFRC, Strasbourg), the ANR Equipex Union (ANR-10-EQPX-52-01), the Labex NIE projects (ANR-11-LABX-0058 NIE) and CSC (ANR-10-LABX-0026 CSC) within the Investissement d’Avenir program ANR-10-IDEX-0002-02, RYSQ, as well as the NSF (PIF-1211914 and PFC-1125844), EOARD (FA8655-13-1-3032) and the Austrian Science Fund (FWF) via the project P24968-N27. Computations made use of the Janus supercomputer, supported by NSF (CNS-0821794), NCAR and CU Boulder/Denver.

Author information

Author notes

    • E. Orgiu
    • , J. George
    •  & J. A. Hutchison

    These authors contributed equally to this work.

Affiliations

  1. ISIS & icFRC, Université de Strasbourg and CNRS, 67000 Strasbourg, France

    • E. Orgiu
    • , J. George
    • , J. A. Hutchison
    • , E. Devaux
    • , C. Genet
    • , G. Pupillo
    • , P. Samorì
    •  & T. W. Ebbesen
  2. IPCMS & icFRC, Université de Strasbourg and CNRS, 67034 Strasbourg, France

    • J. F. Dayen
    • , B. Doudin
    •  & G. Pupillo
  3. EPFL, STI SMX-GE MXG 030 Station 12, CH-1015 Lausanne, Switzerland

    • F. Stellacci
  4. JILA, NIST, Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA

    • J. Schachenmayer
  5. Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25 A-6020 Innsbruck, Austria

    • C. Genes

Authors

  1. Search for E. Orgiu in:

  2. Search for J. George in:

  3. Search for J. A. Hutchison in:

  4. Search for E. Devaux in:

  5. Search for J. F. Dayen in:

  6. Search for B. Doudin in:

  7. Search for F. Stellacci in:

  8. Search for C. Genet in:

  9. Search for J. Schachenmayer in:

  10. Search for C. Genes in:

  11. Search for G. Pupillo in:

  12. Search for P. Samorì in:

  13. Search for T. W. Ebbesen in:

Contributions

T.W.E. conceived the idea and supervised the project. T.W.E. and E.O. designed the device experiments. J.G., J.A.H. and E.D. undertook the spectroscopic experiments. E.D., E.O., J.G., J.A.H. and J.F.D. fabricated and performed the device experiments. B.D., P.S., C. Genet and F.S. helped with the interpretation of the experimental data. G.P., C. Genes and J.S. developed the theoretical framework and performed the simulations. All authors contributed to the discussions and the preparation of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to T. W. Ebbesen.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4392

Further reading