Conductivity in organic semiconductors hybridized with the vacuum field


Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea, organic semiconductors were strongly coupled to plasmonic modes to form coherent states that can extend over as many as 105 molecules and should thereby favour conductivity. Experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility. A theoretical quantum model confirms the delocalization of the wavefunctions of the hybridized states and its effect on the conductivity. Our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light–matter strong coupling with organic semiconductors.
Figure 2: Conductivity measurements under strong coupling on Ag and Al arrays.
Figure 3: Conductivity under strong coupling on Al arrays and gating.
Figure 4: Theoretical model.


  1. 1

    Haroche, S. in Fundamental Systems in Quantum Optics (eds Dalibard, J., Raimond, J. M. & Zinn-Justin, J.) (North Holland, 1992).

    Google Scholar 

  2. 2

    Houdré, R. Early stage of continuous wave experiments on cavity-polaritons. Phys. Status Solidi B 242, 2167–2196 (2005).

    Article  Google Scholar 

  3. 3

    Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photon. 7, 128–132 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Agranovich, V. M. & Malshukov, A. G. Surface polariton spectra if the resonance with the transition layer vibrations exist. Opt. Commun. 11, 169–171 (1974).

    CAS  Article  Google Scholar 

  5. 5

    Strashko, A. A. & Agranovich, V. M. To the theory of surface plasmon–polaritons on metals covered with resonant thin films. Opt. Commun. 332, 201–205 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultra-strong coupling. Phys. Rev. Lett. 106, 196405 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).

    Article  Google Scholar 

  8. 8

    Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to the vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Hutchison, J. A. et al. Tuning the work-function via strong coupling. Adv. Mater. 25, 2481–2485 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Canaguier-Durand, A. et al. Thermodynamics of molecules strongly coupled to the vacuum field. Angew. Chem. Int. Ed. 52, 10533–10536 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling to surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

    Article  Google Scholar 

  12. 12

    Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1490–1537 (2010).

    Article  Google Scholar 

  13. 13

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  Google Scholar 

  15. 15

    Ballarini, D. et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Sapienza, L. et al. Electrically injected cavity polaritons. Phys. Rev. Lett. 100, 136806 (2008).

    CAS  Article  Google Scholar 

  19. 19

    De Liberato, S. & Ciuti, C. Quantum theory of electron tunneling into intersubband cavity polariton states. Phys. Rev. B 79, 075317 (2009).

    Article  Google Scholar 

  20. 20

    González-Tudela, A., Huidobro, P. A., Martín-Moreno, L., Tejedor, C. & García-Vidal, F. J. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).

    Article  Google Scholar 

  21. 21

    Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2013).

    Article  Google Scholar 

  22. 22

    Bhattacharya, P., Xiao, B., Bhowmick, S. & Heo, J. Solid state electrically inject exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

    Article  Google Scholar 

  23. 23

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Tischler, J. R., Bradley, M. S., Bulovic, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  Google Scholar 

  25. 25

    Shi, L. et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 112, 153002 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH). Chem. Commun. 16, 578–580 (1977).

    Article  Google Scholar 

  27. 27

    Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    CAS  Article  Google Scholar 

  28. 28

    Burroughs, J. H. et al. Light emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  Google Scholar 

  29. 29

    Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Kahn, A., Koch, N. & Gao, J. Electronic structure and electrical properties of interfaces between metals and p-conjugated molecular films. Polym. Sci. Polym. Phys. 41, 2529–2548 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Sirringhaus, H., Bird, M., Richards, T. & Zhao, N. Charge transport physics of conjugated polymer field-effect transistors. Adv. Mater. 22, 3893–3898 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Arias, A. C., Mackenzie, J. D., McCulloch, I., Rivnay, J. & Salleo, A. Materials and applications for large area electronics: Solution-based approaches. Chem. Rev. 110, 3–24 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Yan, H. et al. A high mobility electron transporting polymer for printed transistors. Nature 457, 679–687 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4:9,10-bis (dicarboximides). Angew. Chem. Int. Ed. 116, 6523–6526 (2004).

    Article  Google Scholar 

  36. 36

    Jones, B. A., Facchetti, A., Wasielewski, M. R. & Marks, T. J. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Rodrigo, S., García-Vidal, F. J. & Martín-Moreno, L. Influence of material properties on extraordinary optical transmission through hole arrays. Phys. Rev. B 77, 075401 (2008).

    Article  Google Scholar 

  39. 39

    Przybilla, F., Genet, C. & Ebbesen, T. W. Long vs. short-range orders in random subwavelength hole arrays. Opt. Express 20, 4697–4709 (2012).

    Article  Google Scholar 

  40. 40

    Archambault, A., Marquier, F., Greffet, J.-J. & Arnaud, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).

    Article  Google Scholar 

  41. 41

    Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (August, 2009).

    CAS  Article  Google Scholar 

  42. 42

    Feist, J. & García-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

    Article  Google Scholar 

  43. 43

    Schachenmayer, J., Genes, C., Tignone, E. & Pupillo, G. Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114, 196403 (2015).

    Article  Google Scholar 

  44. 44

    Kibis, O. V. How to suppress the backscattering of conduction electrons? Europhys. Lett. 107, 57003 (2014).

    Article  Google Scholar 

  45. 45

    Morina, S., Kibis, O. V., Pervishko, A. A. & Shelykh, I. A. Transport properties of a two-dimensional electron gas dressed by light. Phys. Rev. B 91, 155312 (2015).

    Article  Google Scholar 

  46. 46

    Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Mori, D. et al. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy Environ. Sci. 7, 2939–2943 (2014).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by USIAS, the ERC through the projects Plasmonics (227557), Suprafunction (257305), and Coldsim (307688), the International Center for Frontier Research in Chemistry (icFRC, Strasbourg), the ANR Equipex Union (ANR-10-EQPX-52-01), the Labex NIE projects (ANR-11-LABX-0058 NIE) and CSC (ANR-10-LABX-0026 CSC) within the Investissement d’Avenir program ANR-10-IDEX-0002-02, RYSQ, as well as the NSF (PIF-1211914 and PFC-1125844), EOARD (FA8655-13-1-3032) and the Austrian Science Fund (FWF) via the project P24968-N27. Computations made use of the Janus supercomputer, supported by NSF (CNS-0821794), NCAR and CU Boulder/Denver.

Author information




T.W.E. conceived the idea and supervised the project. T.W.E. and E.O. designed the device experiments. J.G., J.A.H. and E.D. undertook the spectroscopic experiments. E.D., E.O., J.G., J.A.H. and J.F.D. fabricated and performed the device experiments. B.D., P.S., C. Genet and F.S. helped with the interpretation of the experimental data. G.P., C. Genes and J.S. developed the theoretical framework and performed the simulations. All authors contributed to the discussions and the preparation of the manuscript.

Corresponding author

Correspondence to T. W. Ebbesen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1087 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orgiu, E., George, J., Hutchison, J. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nature Mater 14, 1123–1129 (2015).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing