Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orientational order of motile defects in active nematics

Abstract

The study of liquid crystals at equilibrium has led to fundamental insights into the nature of ordered materials, as well as to practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, driven away from equilibrium by the autonomous motion of their constituent rod-like particles1,2,3,4. This internally generated activity powers the continuous creation and annihilation of topological defects, which leads to complex streaming flows whose chaotic dynamics seem to destroy long-range order5,6,7,8,9,10,11. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimetre-scale distances in microtubule-based active nematics, we identify a non-equilibrium phase characterized by a system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experimental and simulation systems.
Figure 2: Defect-ordered phase in experiments.
Figure 3: Defect-ordered phase in simulations.
Figure 4: Quantitative measurements of defect alignment.

Similar content being viewed by others

References

  1. Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007).

    Article  CAS  Google Scholar 

  2. Duclos, G., Garcia, S., Yevick, H. G. & Silberzan, P. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10, 2346–2353 (2014).

    Article  CAS  Google Scholar 

  3. Zhou, S., Sokolov, A., Lavrentovich, O. D. & Aranson, I. S. Living liquid crystals. Proc. Natl Acad. Sci. USA 111, 1265–1270 (2014).

    Article  CAS  Google Scholar 

  4. Brugués, J. & Needleman, D. Physical basis of spindle self-organization. Proc. Natl Acad. Sci. USA 111, 18496–18500 (2014).

    Article  Google Scholar 

  5. Aditi Simha, R. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).

    Article  CAS  Google Scholar 

  6. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  CAS  Google Scholar 

  7. Giomi, L., Bowick, M. J., Ma, X. & Marchetti, M. C. Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013).

    Article  Google Scholar 

  8. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Velocity correlations in an active nematic. Phys. Rev. Lett. 111, 118101 (2013).

    Article  Google Scholar 

  9. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Instabilities and topological defects in active nematics. Europhys. Lett. 105, 18001 (2014).

    Article  Google Scholar 

  10. Gao, T., Blackwell, R., Glaser, M. A., Betterton, M. & Shelley, M. J. Multiscale polar theory of microtubule and motor-protein assemblies. Phys. Rev. Lett. 114, 048101 (2015).

    Article  Google Scholar 

  11. Ngo, S. et al. Large-scale chaos and fluctuations in active nematics. Phys. Rev. Lett. 113, 038302 (2014).

    Article  Google Scholar 

  12. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: Defect dynamics in liquid crystals. Science 251, 1336–1342 (1991).

    Article  CAS  Google Scholar 

  13. Nelson, D. & Halperin, B. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19, 2457–2484 (1979).

    Article  CAS  Google Scholar 

  14. Renn, S. R. & Lubensky, T. C. Abrikosov dislocation lattice in a model of the cholesteric to smectic-A transition. Phys. Rev. A 38, 2132–2147 (1988).

    Article  CAS  Google Scholar 

  15. Brandt, E. H. The flux-line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995).

    Article  CAS  Google Scholar 

  16. Toner, J. & Tu, Y. Long-range order in a two-dimensional dynamical XY model: How birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995).

    Article  CAS  Google Scholar 

  17. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    Article  CAS  Google Scholar 

  18. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  Google Scholar 

  19. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  CAS  Google Scholar 

  20. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article  CAS  Google Scholar 

  21. Redner, G. S., Hagan, M. F. & Baskaran, A. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013).

    Article  Google Scholar 

  22. Weber, C. a., Bock, C. & Frey, E. Defect-mediated phase transitions in active soft matter. Phys. Rev. Lett. 112, 168301 (2014).

    Article  Google Scholar 

  23. Wensink, H. H. et al. Meso-scale turbulence in living fluids. Proc. Natl Acad. Sci. USA 109, 14308–14313 (2012).

    Article  CAS  Google Scholar 

  24. Tjhung, E., Marenduzzo, D. & Cates, M. E. Spontaneous symmetry breaking in active droplets provides a generic route to motility. Proc. Natl Acad. Sci. USA 109, 12381–12386 (2012).

    Article  CAS  Google Scholar 

  25. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article  CAS  Google Scholar 

  26. Nédélec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  Google Scholar 

  27. Needleman, D. J. et al. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: A probe of interprotofilament interactions. Phys. Rev. Lett. 93, 198104 (2004).

    Article  Google Scholar 

  28. Hilitski, F. et al. Measuring cohesion between macromolecular filaments one pair at a time: Depletion-induced microtubule bundling. Phys. Rev. Lett. 114, 138102 (2015).

    Article  Google Scholar 

  29. Hentrich, C. & Surrey, T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J. Cell Biol. 189, 465–480 (2010).

    Article  CAS  Google Scholar 

  30. Shribak, M. & Oldenbourg, R. Techniques for fast and sensitive measurements of two-dimensional birefringence distributions. Appl. Opt. 42, 3009–3017 (2003).

    Article  Google Scholar 

  31. Bates, M. A. & Frenkel, D. Phase behavior of two-dimensional hard rod fluids. J. Chem. Phys. 112, 10034 (2000).

    Article  CAS  Google Scholar 

  32. Shi, X. Q. & Ma, Y. Q. Topological structure dynamics revealing collective evolution in active nematics. Nature Commun. 4, 3013 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The experimental portion of this study was primarily supported by the Department of Energy, Office of Basic Energy Sciences, through award DE-SC0010432TDD (S.J.D. and Z.D.). The computational portion of this work (G.S.R., M.F.H. and A.B.) was supported by NSF-MRSEC-1420382 and NSF-DMR-1149266. Computational resources were provided by the NSF through XSEDE (Stampede and Trestles) and the Brandeis HPCC, which is partially supported by the Brandeis MRSEC (NSF-MRSEC-1420382). We acknowledge the use of a MRSEC optical and biosynthesis facility supported by NSF-MRSEC-1420382.

Author information

Authors and Affiliations

Authors

Contributions

S.J.D. and Z.D. conceived the experiments and G.S.R., A.B. and M.F.H. conceived the simulations. S.J.D. acquired experimental data. G.S.R. performed computer simulations. S.J.D. and G.S.R. analysed defect dynamics. S.J.D., G.S.R., A.B., M.F.H. and Z.D. wrote the paper. All authors revised the manuscript.

Corresponding authors

Correspondence to Michael F. Hagan or Zvonimir Dogic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4130 kb)

Supplementary Information

Supplementary Movie 1 (MOV 26283 kb)

Supplementary Information

Supplementary Movie 2 (MOV 34571 kb)

Supplementary Information

Supplementary Movie 3 (MOV 11910 kb)

Supplementary Information

Supplementary Movie 4 (MOV 22171 kb)

Supplementary Information

Supplementary Movie 5 (MOV 28783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeCamp, S., Redner, G., Baskaran, A. et al. Orientational order of motile defects in active nematics. Nature Mater 14, 1110–1115 (2015). https://doi.org/10.1038/nmat4387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing