Commentary | Published:

DNA-linked superlattices get into shape

Nature Materials volume 14, pages 746749 (2015) | Download Citation

Advances in the control of the shape, bonding direction and valency of DNA-coated nanoparticles allow the synthesis of nanoparticle crystallites of ever increasing complexity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Nature 505, 601 (2014).

  2. 2.

    Proc. R. Soc. Lond. A 89, 248–277 (1913).

  3. 3.

    & Nature 171, 737–738 (1953).

  4. 4.

    et al. Nature 181, 662–666 (1958).

  5. 5.

    et al. Science 292, 1863–1876 (2001).

  6. 6.

    , & Science 254, 1312–1319 (1991).

  7. 7.

    , & Nature Phys. 10, 73–79 (2014).

  8. 8.

    , & Science 347, 1260901–1260911 (2015).

  9. 9.

    et al. Nature 439, 55–59 (2006).

  10. 10.

    et al. Nature Mater. 14, 833–839 (2015).

  11. 11.

    et al. Nature Mater. 14, 840–847 (2015).

  12. 12.

    et al. Nature Nanotech. 10, 453–458 (2015).

  13. 13.

    et al. Nature Nanotech. 10, 637–644 (2015).

  14. 14.

    et al. Nature Commun. 6, 6912 (2015).

  15. 15.

    et al. Nature Mater. 9, 913–917 (2010).

  16. 16.

    et al. Nature 491, 51–55 (2012).

  17. 17.

    et al. J. Am. Chem. Soc. 137, 4320–4323 (2015).

  18. 18.

    J. Theor. Biol. 99, 237–247 (1982).

  19. 19.

    et al. J. Am. Chem. Soc. 136, 11198–11211 (2014).

  20. 20.

    et al. Nanomedicine 8, 105–121 (2013).

  21. 21.

    et al. Science 338, 506–510 (2012).

  22. 22.

    et al. Nature 483, 311–314 (2012).

  23. 23.

    Nature 440, 297–302 (2006).

  24. 24.

    et al. Nucleic Acids Res. 37, 5001–5006 (2009).

  25. 25.

    et al. Nature Methods 8, 221–229 (2011).

  26. 26.

    et al. Nano Lett. 6, 1502–1504 (2006).

  27. 27.

    et al. Nature 461, 74–77 (2009).

  28. 28.

    et al. Angew. Chem. Int. Ed. 50, 264–267 (2010).

  29. 29.

    et al. Nature Chem. 6, 994–1002 (2014).

  30. 30.

    et al. ACS Nano 9, 3530–3539 (2015).

  31. 31.

    et al. Nature Nanotech. 9, 74–78 (2014).

  32. 32.

    , , & Nature 397, 144–146 (1999).

  33. 33.

    et al. Nature 406, 605–608 (2000).

  34. 34.

    et al. Science 314, 1583–1585 (2006).

  35. 35.

    et al. Science 347, 1446–1452 (2015).

  36. 36.

    et al. Nature Mater. 13, 862–866 (2014).

  37. 37.

    et al. Nature 505, 73–77 (2014).

  38. 38.

    et al. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

  39. 39.

    et al. Science 278, 1924–1927 (1997).

  40. 40.

    , & Proc. Natl Acad. Sci. USA 112, 4564–4569 (2015).

Download references

Acknowledgements

We thank N.C. Seeman, O. Gang and C.A. Mirkin for their helpful comments, and the Deutsche Forschungsgesellschaft (DFG) for their generous financial support through the Sonderforschungsbereich SFB 1032 (Projects A06 and A07).

Author information

Affiliations

  1. Bert Nickel and Tim Liedl are at the Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany

    • Bert Nickel
    •  & Tim Liedl

Authors

  1. Search for Bert Nickel in:

  2. Search for Tim Liedl in:

Corresponding author

Correspondence to Tim Liedl.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat4376

Further reading Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing