Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design principles for solid-state lithium superionic conductors

Abstract

Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li+ conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm−1) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of the anion sublattice to a bcc/fcc/hcp framework in solid-state Li-ion conductors.
Figure 2: Li-ion migration pathways in bcc/fcc/hcp-type anion lattices.
Figure 3: Activation barrier for Li-ion migration versus lattice volume.
Figure 4: Li-ion probability densities in Li-ion conductors.
Figure 5: Similarity of screened ICSD structures containing Li and S to a bcc anion framework using the structural matching algorithm.

Similar content being viewed by others

References

  1. Gallagher, S. Boeing’s Dreamliner batteries ‘inherently unsafe’—and yours may be too. Ars Technica (January, 2013); http://arstechnica.com/business/2013/01/boeings-dreamliner-batteries-inherently-unsafe-and-yours-may-be-too

  2. Meier, F. & Woodyard, C. Feds review third Tesla fire as shares fall again. USA Today (7 November 2013); http://www.usatoday.com/story/money/cars/2013/11/07/third-fire-in-tesla-model-s-reported/3465717

  3. Knauth, P. Inorganic solid Li ion conductors: An overview. Solid State Ion. 180, 911–916 (2009).

    Article  CAS  Google Scholar 

  4. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  CAS  Google Scholar 

  5. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Article  Google Scholar 

  6. Bruce, P. G. The A-C conductivity of polycrystalline LISICON, Li2+2xZn1−xGeO4, and a model for intergranular constriction resistances. J. Electrochem. Soc. 130, 662–669 (1983).

    Article  CAS  Google Scholar 

  7. Aono, H. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

    Article  CAS  Google Scholar 

  8. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Article  CAS  Google Scholar 

  9. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  10. Yu, X., Bates, J. B., Jellison, G. E. Jr & Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997).

    Article  CAS  Google Scholar 

  11. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742 (2001).

    Article  CAS  Google Scholar 

  12. Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11 . Solid State Ion. 178, 1163–1167 (2007).

    Article  CAS  Google Scholar 

  13. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  14. Kamaya, N. et al. A lithium superionic conductor. Nature Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  15. Kuhn, A., Duppel, V. & Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ. Sci. 6, 3548–3552 (2013).

    Article  CAS  Google Scholar 

  16. Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10 ± 1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013).

    Article  CAS  Google Scholar 

  17. Bron, P. et al. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).

    Article  CAS  Google Scholar 

  18. Kuhn, A. et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys. Chem. Chem. Phys. 16, 14669–14674 (2014).

    Article  CAS  Google Scholar 

  19. Whiteley, J. M., Woo, J. H., Hu, E., Nam, K.-W. & Lee, S.-H. Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    Article  Google Scholar 

  20. Kato, Y. et al. Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−xMx)P2S12 (M = Si, Sn). J. Power Sources 271, 60–64 (2014).

    Article  CAS  Google Scholar 

  21. Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  CAS  Google Scholar 

  22. Urban, A., Lee, J. & Ceder, G. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Energy Mater. 4, 1400478 (2014).

    Article  Google Scholar 

  23. Kuhn, A., Köhler, J. & Lotsch, B. V. Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12 . Phys. Chem. Chem. Phys. 15, 11620–11622 (2013).

    Article  CAS  Google Scholar 

  24. Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).

    Article  Google Scholar 

  25. Inorganic Crystal Structure Database (FIZ Karlsruhe, 2014); http://icsd.fiz-karlsruhe.de/icsd

  26. Murayama, M., Sonoyama, N., Yamada, A. & Kanno, R. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system. Solid State Ion. 170, 173–180 (2004).

    Article  CAS  Google Scholar 

  27. Van der Ven, A., Ceder, G., Asta, M. & Tepesch, P. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).

    Article  Google Scholar 

  28. Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012).

    Article  CAS  Google Scholar 

  29. Vinatier, P., Gravereau, P., Ménétrier, M., Trut, L. & Levasseur, A. Li3BS3 . Acta Crystallogr. C 50, 1180–1183 (1994).

    Article  Google Scholar 

  30. Homma, K. et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4 . Solid State Ion. 182, 53–58 (2011).

    Article  CAS  Google Scholar 

  31. Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4 . J. Am. Chem. Soc. 135, 20–23 (2013).

    Google Scholar 

  32. Zhao, Y. & Daemen, L. L. Superionic conductivity in lithium-rich anti-perovskites. J. Am. Chem. Soc. 134, 15042–15047 (2012).

    Article  CAS  Google Scholar 

  33. Emly, A., Kioupakis, E. & Van der Ven, A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors. Chem. Mater. 25, 4663–4670 (2013).

    Article  CAS  Google Scholar 

  34. Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).

    Article  CAS  Google Scholar 

  35. Yoo, H. D. et al. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  CAS  Google Scholar 

  36. Deiseroth, H. J. et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008).

    Article  CAS  Google Scholar 

  37. Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Commun. 3, 856 (2012).

    Article  Google Scholar 

  38. Tanibata, N. et al. X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4 6Na4SiS4 glass-ceramic electrolytes. ChemElectroChem 1, 1130–1132 (2014).

    Article  CAS  Google Scholar 

  39. Xie, H., Alonso, J. A., Li, Y., Fernández-Díaz, M. T. & Goodenough, J. B. Lithium distribution in aluminum-free cubic Li7La3Zr2O12 . Chem. Mater. 23, 3587–3589 (2011).

    Article  CAS  Google Scholar 

  40. Xu, M. et al. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr). Phys. Rev. B 85, 052301 (2012).

    Article  Google Scholar 

  41. Miara, L. J. et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2xy (La3−xRbx) (Zr2−yTay)O12 (0 ≤ x ≤ 0.375,0 ≤ y ≤ 1) superionic conductor: A first principles investigation. Chem. Mater. 25, 3048–3055 (2013).

    Article  CAS  Google Scholar 

  42. Lin, Z., Liu, Z., Dudney, N. J. & Liang, C. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7, 2829–2833 (2013).

    Article  CAS  Google Scholar 

  43. Ong, S. P. et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  44. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  48. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Samsung Advanced Institute of Technology. Computational resources from the National Energy Research Scientific Computing Center (NERSC) and from the Extreme Science and Engineering Discovery Environment (XSEDE) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.C., W.D.R. and Y.W. proposed the concept. Y.W. carried out the calculations and together with W.D.R. prepared the manuscript initially. W.D.R. conceived and implemented the structural matcher algorithm. All authors contributed to the discussions and revisions of the manuscript.

Corresponding author

Correspondence to Gerbrand Ceder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Richards, W., Ong, S. et al. Design principles for solid-state lithium superionic conductors. Nature Mater 14, 1026–1031 (2015). https://doi.org/10.1038/nmat4369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing