Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New perspectives for Rashba spin–orbit coupling

Abstract

In 1984, Bychkov and Rashba introduced a simple form of spin–orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin–orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Various realizations of spin–orbitronics.
Figure 2: Rashba spin splitting at interfaces.
Figure 3: Topological insulators.
Figure 4: Low-dimensional Dirac materials.
Figure 5: Tuning spin–orbit coupling in cold-atom gases.

References

  1. 1

    Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  CAS  Google Scholar 

  2. 2

    Rashba, E. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

    Google Scholar 

  3. 3

    Vas'ko, F. T. Spin splitting in the spectrum of two-dimensional electrons due to the surface potential. P. Zh. Eksp. Teor. Fiz. 30, 574–577 (1979).

    CAS  Google Scholar 

  4. 4

    Bychkov, Y. A. & Rasbha, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. P. Zh. Eksp. Teor. Fiz. 39, 66–69 (1984).

    CAS  Google Scholar 

  5. 5

    Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Zutic, I. Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007).

    Article  CAS  Google Scholar 

  6. 6

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  7. 7

    Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    Article  CAS  Google Scholar 

  8. 8

    Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. ZhETF Pis. Red. 13, 657–660 (1971).

    Google Scholar 

  9. 9

    Hirsch, J. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  CAS  Google Scholar 

  10. 10

    Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  11. 11

    Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  CAS  Google Scholar 

  12. 12

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  13. 13

    Kato, Y. K., Mährlein, S., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  14. 14

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  15. 15

    Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  CAS  Google Scholar 

  16. 16

    Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  17. 17

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  CAS  Google Scholar 

  18. 18

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. http://journals.aps.org/rmp/accepted/58077E11Q8f15e01e0aa5510b2767e3da25148b87 (2015).

  19. 19

    Rauch, H. et al. Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975).

    Article  Google Scholar 

  20. 20

    König, M. et al. Direct observation of the Aharonov–Casher Phase. Phys. Rev. Lett. 96, 076804 (2006).

    Article  CAS  Google Scholar 

  21. 21

    Bergsten, T., Kobayashi, T., Sekine, Y. & Nitta, J. Experimental demonstration of the time reversal Aharonov–Casher effect. Phys. Rev. Lett. 97, 196803 (2006).

    Article  CAS  Google Scholar 

  22. 22

    Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).

    Article  CAS  Google Scholar 

  23. 23

    Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted InGaAs/InAlAs heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  24. 24

    Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nature Phys. 5, 675–681 (2009).

    Article  CAS  Google Scholar 

  25. 25

    Ivchenko, E. L. & Pikus, G. E. New photogalvanic effect in gyrotropic crystals. JETP Lett. 27, 604–608 (1978).

    Google Scholar 

  26. 26

    Ganichev, S. D. Spin-galvanic effect and spin orientation by current in non-magnetic semiconductors. Int. J. Mod. Phys. B 22, 1–26 (2008).

    Article  CAS  Google Scholar 

  27. 27

    Rojas-Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nature Commun. 4, 2944 (2013).

    Article  CAS  Google Scholar 

  28. 28

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  29. 29

    Kato, Y. K., Myers, R., Gossard, A. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  CAS  Google Scholar 

  30. 30

    Ganichev, S. D. et al. Electric current-induced spin orientation in quantum well structures. J. Magn. Magn. Mater. 300, 127–131 (2006).

    Article  CAS  Google Scholar 

  31. 31

    Schultz, M. et al. Rashba spin splitting in a gated HgTe quantum well. Semicond. Sci. Technol. 11, 1168–1172 (1996).

    Article  CAS  Google Scholar 

  32. 32

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  33. 33

    Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  CAS  Google Scholar 

  34. 34

    Ohe, J., Yamamoto, M., Ohtsuki, T. & Nitta, J. Mesoscopic Stern–Gerlach spin filter by nonuniform spin-orbit interaction. Phys. Rev. B 72, 041308 (2005).

    Article  CAS  Google Scholar 

  35. 35

    Kohda, M. et al. Spin–orbit induced electronic spin separation in semiconductor nanostructures. Nature Commun. 3, 1082 (2012).

    Article  CAS  Google Scholar 

  36. 36

    Herbert, S. T., Muhammad, M. & Johnson, M. All-electric quantum point contact spin-polarizer. Nature Nanotech. 4, 759–764 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Frolov, S. M. et al. Ballistic spin resonance. Nature 458, 868–871 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  39. 39

    Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  40. 40

    Van den Berg, J. et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).

    Article  CAS  Google Scholar 

  41. 41

    Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  CAS  Google Scholar 

  42. 42

    Dyakonov, M. & Perel, V. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972).

    Google Scholar 

  43. 43

    Averkiev, N. S. & Golub, L. E. Giant spin relaxation anisotropy in zinc-blende heterostructures. Phys. Rev. B 60, 15582–15584 (1999).

    Article  CAS  Google Scholar 

  44. 44

    Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor. Phys. Rev. Lett. 90, 146801 (2003).

    Article  CAS  Google Scholar 

  45. 45

    Bernevig, B. A., Orenstein, J. & Zhang, S.-C. Exact SU(2) symmetry and persistent spin helix in a spin-orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article  CAS  Google Scholar 

  46. 46

    Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article  CAS  Google Scholar 

  47. 47

    Sasaki, A. et al. Direct determination of spin–orbit interaction coefficients and realization of the persistent spin helix symmetry. Nature Nanotech. 9, 703–709 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  49. 49

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  50. 50

    Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    Article  CAS  Google Scholar 

  51. 51

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

    Article  CAS  Google Scholar 

  52. 52

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  53. 53

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  54. 54

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature Mater. 9, 230–234 (2010).

    Article  CAS  Google Scholar 

  55. 55

    Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nature Nanotech. 9, 211–217 (2014).

    Article  CAS  Google Scholar 

  56. 56

    Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nature Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  57. 57

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  58. 58

    Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    Article  CAS  Google Scholar 

  59. 59

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nature Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  60. 60

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  CAS  Google Scholar 

  61. 61

    Wadley, P. et al. Electrical switching of an antiferromagnet. Preprint at http://arxiv.org/abs/1503.03765 (2015).

  62. 62

    Dzyaloshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).

    Google Scholar 

  63. 63

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  64. 64

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  65. 65

    Zakeri, K. et al. Asymmetric spin-wave dispersion on Fe(110): Direct evidence of the Dzyaloshinskii–Moriya interaction. Phys. Rev. Lett. 104, 137203 (2010).

    Article  CAS  Google Scholar 

  66. 66

    Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article  CAS  Google Scholar 

  67. 67

    Matsumoto, R. & Murakami, S. Theoretical prediction of a rotating magnon wave packet in ferromagnets. Phys. Rev. Lett. 106, 197202 (2011).

    Article  CAS  Google Scholar 

  68. 68

    Manchon, A., Ndiaye, P. B., Moon, J., Lee, H. & Lee, K. Magnon-mediated Dzyaloshinskii–Moriya torque in homogeneous ferromagnets. Phys. Rev. B 90, 224403 (2014).

    Article  CAS  Google Scholar 

  69. 69

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  70. 70

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  71. 71

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  72. 72

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  73. 73

    Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  CAS  Google Scholar 

  74. 74

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  CAS  Google Scholar 

  75. 75

    Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    Article  CAS  Google Scholar 

  76. 76

    Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  CAS  Google Scholar 

  77. 77

    Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  CAS  Google Scholar 

  78. 78

    Středa, P. & Šeba, P. Antisymmetric spin filtering in one-dimensional electron systems with uniform spin-orbit coupling. Phys. Rev. Lett. 90, 256601 (2003).

    Article  CAS  Google Scholar 

  79. 79

    Lutchyn, R., Sau, J. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  CAS  Google Scholar 

  80. 80

    Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  CAS  Google Scholar 

  81. 81

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  82. 82

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling. Phys. Rev. B 84, 195442 (2011).

    Article  CAS  Google Scholar 

  84. 84

    Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article  Google Scholar 

  85. 85

    Nayak, C., Simon, S., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  86. 86

    Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  CAS  Google Scholar 

  87. 87

    Alexandradinata, A., Fang, C., Gilbert, M. J. & Bernevig, B. A. Spin-orbit-free topological insulators without time-reversal symmetry. Phys. Rev. Lett. 113, 116403 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Ikegami, H., Tsutsumi, Y. & Kono, K. Chiral symmetry breaking in 3He-A. Science 341, 59–62 (2013).

    Article  CAS  Google Scholar 

  89. 89

    Wehling, T. O., Black-Schaffer, A. M. & Balatsky, A. V. Dirac materials. Adv. Phys. 63, 1–76 (2014).

    Article  CAS  Google Scholar 

  90. 90

    Volovik, G. E. An analog of the quantum Hall effect in a superfluid 3He film. Sov. Phys. JETP 67, 1804–1811 (1988).

    Google Scholar 

  91. 91

    Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  92. 92

    Slonczewski, J. C. & Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272–279 (1958).

    Article  CAS  Google Scholar 

  93. 93

    Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  94. 94

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nature Nanotech. 9, 794–807 (2014).

    Article  CAS  Google Scholar 

  95. 95

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  CAS  Google Scholar 

  96. 96

    Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  CAS  Google Scholar 

  97. 97

    Qiao, Z. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the 'parity anomaly'. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  CAS  Google Scholar 

  99. 99

    Balakrishnan, J. et al. Giant spin Hall effect in graphene grown by chemical vapour deposition. Nature Commun. 5, 4748 (2014).

    Article  CAS  Google Scholar 

  100. 100

    Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    Article  CAS  Google Scholar 

  101. 101

    Marchenko, D. et al. Giant Rashba splitting in graphene due to hybridization with gold. Nature Commun. 3, 1232 (2012).

    Article  CAS  Google Scholar 

  102. 102

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  CAS  Google Scholar 

  103. 103

    Rycerz, A., Tworzydło, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  104. 104

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  105. 105

    Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article  CAS  Google Scholar 

  106. 106

    Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  109. 109

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  110. 110

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. Valleytronics. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  111. 111

    Yuan, H. et al. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2 . Nature Nanotech. 9, 851–857 (2014).

    Article  CAS  Google Scholar 

  112. 112

    Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  CAS  Google Scholar 

  113. 113

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

    Article  CAS  Google Scholar 

  114. 114

    Lin, Y.-J., Jimenez-Garcıa, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  CAS  Google Scholar 

  115. 115

    Aidelsburger, M. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    Article  CAS  Google Scholar 

  116. 116

    Zhang, J.-Y. et al. Collective dipole oscillations of a spin-orbit coupled Bose–Einstein condensate. Phys. Rev. Lett. 109, 115301 (2012).

    Article  CAS  Google Scholar 

  117. 117

    Qu, C., Hamner, C., Gong, M., Zhang, C. & Engels, P. Observation of zitterbewegung in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. A 88, 021604 (2013).

    Article  CAS  Google Scholar 

  118. 118

    Ji, S.-C. et al. Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas. Nature Phys. 10, 314–320 (2014).

    Article  CAS  Google Scholar 

  119. 119

    Wang, P., Yu, Z., Fu, Z., Miao, J. & Huang, L. Spin-orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

    Article  CAS  Google Scholar 

  120. 120

    Cheuk, L. W. et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

    Article  CAS  Google Scholar 

  121. 121

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  CAS  Google Scholar 

  122. 122

    Williams, R. A. et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2011).

    Article  CAS  Google Scholar 

  123. 123

    Cole, W. S., Zhang, S., Paramekanti, A. & Trivedi, N. Bose–Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity. Phys. Rev. Lett. 109, 085302 (2012).

    Article  CAS  Google Scholar 

  124. 124

    Radić, J., Di Ciolo, A., Sun, K. & Galitski, V. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett. 109, 085303 (2012).

    Article  CAS  Google Scholar 

  125. 125

    Cocks, D. et al. Time-reversal-invariant Hofstadter–Hubbard model with ultracold Fermions. Phys. Rev. Lett. 109, 205303 (2012).

    Article  CAS  Google Scholar 

  126. 126

    Cai, Z., Zhou, X. & Wu, C. Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices. Phys. Rev. A 85, 061605 (2012).

    Article  CAS  Google Scholar 

  127. 127

    Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

    Article  CAS  Google Scholar 

  128. 128

    Vishwanath, A. & Senthil, T. Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect. Phys. Rev. X 3, 011016 (2013).

    Google Scholar 

  129. 129

    Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  CAS  Google Scholar 

  130. 130

    Yang, B.-J. & Nagaosa, N. Emergent topological phenomena in thin films of pyrochlore iridates. Phys. Rev. Lett. 112, 246402 (2014).

    Article  CAS  Google Scholar 

  131. 131

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  132. 132

    Xu, S. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    Article  CAS  Google Scholar 

  133. 133

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  CAS  Google Scholar 

  134. 134

    Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    Article  CAS  Google Scholar 

  135. 135

    Ast, C. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

    Article  CAS  Google Scholar 

  136. 136

    Winkler, R. Spin-Orbit Coupling effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

    Book  Google Scholar 

  137. 137

    Dyakonov, M. I. & Kachorovskii, V. Y. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).

    Google Scholar 

  138. 138

    Bihlmayer, G., Koroteev, Y. M., Echenique, P. M., Chulkov, E. V. & Blügel, S. The Rashba-effect at metallic surfaces. Surf. Sci. 600, 3888–3891 (2006).

    Article  CAS  Google Scholar 

  139. 139

    Park, Y. H. et al. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements. Appl. Phys. Lett. 103, 252407 (2013).

    Article  CAS  Google Scholar 

  140. 140

    Nakamura, H., Koga, T. & Kimura, T. Experimental evidence of cubic Rashba effect in an inversion-symmetric oxide. Phys. Rev. Lett. 108, 206601 (2012).

    Article  CAS  Google Scholar 

  141. 141

    LaShell, S., McDougall, B. & Jensen, E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys. Rev. Lett. 77, 3419–3422 (1996).

    Article  CAS  Google Scholar 

  142. 142

    Varykhalov, A. et al. Ir(111) surface state with giant Rashba splitting persists under graphene in air. Phys. Rev. Lett. 108, 066804 (2012).

    Article  CAS  Google Scholar 

  143. 143

    King, P. D. C. et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3 . Phys. Rev. Lett. 107, 096802 (2011).

    Article  CAS  Google Scholar 

  144. 144

    Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater. 10, 521–526 (2011).

    Article  CAS  Google Scholar 

  145. 145

    Moser, J. et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99, 056601 (2007).

    Article  CAS  Google Scholar 

  146. 146

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  147. 147

    Heisenberg, W. Über den Bau der Atomkerne. I. Z. Phys. 77, 1–11 (1932).

    Article  CAS  Google Scholar 

  148. 148

    Pesin, D. A. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409–416 (2012).

    Article  CAS  Google Scholar 

  149. 149

    Liu, X., Borunda, M. F., Liu, X. & Sinova, J. Effect of induced spin-orbit coupling for atoms via laser fields. Phys. Rev. Lett. 102, 046402 (2009).

    Article  CAS  Google Scholar 

  150. 150

    Dalibard, J., Gerbier, F., Juzeliunas, G. & Öhberg, P. Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E.I. Rashba, M.I. Dyakonov, D. Xiao, L. Fritz and A.H. MacDonald for useful discussions. A.M. was supported by the King Abdullah University of Science and Technology (KAUST). H.C.K. was supported by the KIST and KU-KIST Institutional Programmes. J.N. acknowledges support by the Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS; no. 22226001). S.M.F. acknowledges ONR BRC on Majorana Fermions, National Science Foundation (NSF), Sloan Foundation, the Charles E. Kaufman foundation and Nanoscience Foundation. R.A.D. is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC) and is part of the D-ITP consortium, a programme of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Manchon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manchon, A., Koo, H., Nitta, J. et al. New perspectives for Rashba spin–orbit coupling. Nature Mater 14, 871–882 (2015). https://doi.org/10.1038/nmat4360

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing