Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Time-domain separation of optical properties from structural transitions in resonantly bonded materials


The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage1 and future applications include universal memories2, flexible displays3, reconfigurable optical circuits4,5, and logic devices6. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Below-threshold dynamics in crystalline GST.
Figure 2: Dynamics of the dielectric function during amorphization.
Figure 3: Structural dynamics during amorphization.
Figure 4: Schematic of the ultrafast transformation pathway.


  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Wuttig, M. Phase-change materials: Towards a universal memory? Nature Mater. 4, 265–266 (2005).

    Article  CAS  Google Scholar 

  3. Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  CAS  Google Scholar 

  4. Rudè, M. et al. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).

    Article  Google Scholar 

  5. Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014).

    Article  CAS  Google Scholar 

  6. Loke, D. et al. Ultrafast phase-change logic device driven by melting processes. Proc. Natl Acad. Sci. USA 111, 13272–13277 (2014).

    Article  CAS  Google Scholar 

  7. Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    Article  CAS  Google Scholar 

  8. Kolobov, A. V. et al. Liquid Ge2Sb2Te5 studied by extended X-ray absorption. Appl. Phys. Lett. 95, 241902 (2009).

    Article  Google Scholar 

  9. Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006).

    Article  Google Scholar 

  10. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  11. Lang, C., Song, S., Manh, D. & Cockayne, D. Building blocks of amorphous Ge2Sb2Te5 . Phys. Rev. B 76, 054101 (2007).

    Article  Google Scholar 

  12. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    Article  CAS  Google Scholar 

  13. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204 (2010).

    Article  Google Scholar 

  14. Lucovsky, G. & White, R. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    Article  CAS  Google Scholar 

  15. Caravati, S., Bernasconi, M. & Parrinello, M. First principles study of the optical contrast in phase change materials. J. Phys. Condens. Matter 22, 315801 (2010).

    Article  CAS  Google Scholar 

  16. Kolobov, A. V., Krbal, M., Fons, P., Tominaga, J. & Uruga, T. Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nature Chem. 3, 311–316 (2011).

    Article  CAS  Google Scholar 

  17. Waldecker, L., Bertoni, R. & Ernstorfer, R. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit. J. Appl. Phys. 117, 044903 (2015).

    Article  Google Scholar 

  18. Huang, L., Callan, J., Glezer, E. & Mazur, E. GaAs under intense ultrafast excitation: Response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).

    Article  CAS  Google Scholar 

  19. Zeiger, H. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

    Article  CAS  Google Scholar 

  20. Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. First principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys. Condens. Matter 21, 255501 (2010).

    Article  Google Scholar 

  21. Shkrob, I. A., Oulianov, D. A., Crowell, R. A. & Pommeret, S. Frequency-domain ‘single-shot’ ultrafast transient absorption spectroscopy using chirped laser pulses. J. Appl. Phys. 96, 25–33 (2004).

    Article  CAS  Google Scholar 

  22. Sciaini, G. et al. Electronic acceleration of atomic motions and disordering in bismuth. Nature 458, 56–59 (2009).

    Article  CAS  Google Scholar 

  23. Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).

    Article  CAS  Google Scholar 

  24. Lindenberg, A. M. et al. Atomic-scale visualization of inertial dynamics. Science 308, 392–395 (2005).

    Article  CAS  Google Scholar 

  25. Harb, M. et al. Electronically driven structure changes of Si captured by femtosecond electron diffraction. Phys. Rev. Lett. 100, 155504 (2008).

    Article  Google Scholar 

  26. Takeda, J., Oba, W., Minami, Y., Saiki, T. & Katayama, I. Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy. Appl. Phys. Lett. 104, 261903 (2014).

    Article  Google Scholar 

  27. Callan, J. et al. Ultrafast laser-induced phase transitions in amorphous GeSb films. Phys. Rev. Lett. 86, 3650–3653 (2001).

    Article  CAS  Google Scholar 

  28. Kampfrath, T. et al. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A 81, 043837 (2010).

    Article  Google Scholar 

  29. Rudé, M. et al. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials. Preprint at (2015)

  30. Kuwahara, M. et al. Temperature dependence of the thermal properties of optical memory materials. Jpn. J. Appl. Phys. 46, 3909–3911 (2007).

    Article  CAS  Google Scholar 

Download references


L.W. acknowledges support by the Leibniz graduate school ‘Dynamics in New Light’. T.A.M. acknowledges financial support through the Marie Curie COFUND project and Spanish Ministry of Economy and Competitiveness (MINECO). R.B. thanks the Alexander von Humboldt Foundation for financial support. V.P. acknowledges financial support from MINECO and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grant TEC2013-46168-R. R.E. acknowledges fruitful discussions with M. Wuttig and funding from the Max Planck Society. S.W. acknowledges financial support from Ramon y Cajal program RYC-2013-14838 and Marie Curie Career Integration Grant PCIG12-GA-2013-618487. V.P. and S.W. acknowledge support from Fundació Cellex.

Author information

Authors and Affiliations



S.W., L.W. and R.E. initiated the project. T.A.M. and S.W. performed the multi-shot optical measurements. S.W., L.W. and T.A.M. performed the single-shot optical measurements. L.W. and R.B. performed the time-resolved diffraction measurements. M.R. fabricated samples, which were characterized by M.R., T.A.M. and J.O. All authors provided input to the interpretation of the data and writing the manuscript.

Corresponding authors

Correspondence to Ralph Ernstorfer or Simon Wall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1038 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waldecker, L., Miller, T., Rudé, M. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nature Mater 14, 991–995 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing