Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

Abstract

Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates—whereas variable stretch maintains—physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variability in stretch pattern alters mitochondrial and overall cellular energetics without producing injury.
Figure 2: Contractility of aortae is regulated by the stretch pattern.
Figure 3: Variability in the stretch pattern alters the structural organization of the mitochondrial, microtubule and actin networks.
Figure 4: Effects, on TMRM-labelled cells, of inhibitors that eliminate the differences between US and MS as well as US and VS.
Figure 5: Effects, on TMRM-labelled cells, of inhibitors that eliminate the differences between MS and VS.
Figure 6: Similarities and differences in signalling during monotonous (MS) and variable (VS) stretching.

Similar content being viewed by others

References

  1. Janson, I. A. & Putnam, A. J. Extracellular matrix elasticity and topography: Material-based cues that affect cell function via conserved mechanisms. J. Biomed. Mater. Res. A 103, 1246–1258 (2014).

    Article  Google Scholar 

  2. Bereiter-Hahn, J. & Voth, M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27, 198–219 (1994).

    Article  CAS  Google Scholar 

  3. Bach, D. et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–17197 (2003).

    Article  CAS  Google Scholar 

  4. Anesti, V. & Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta 1757, 692–699 (2006).

    Article  CAS  Google Scholar 

  5. Ingber, D. E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    Article  CAS  Google Scholar 

  6. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  Google Scholar 

  7. Chapman, K. E. et al. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L834–L841 (2005).

    Article  CAS  Google Scholar 

  8. Mancia, G. et al. Long-term prognostic value of blood pressure variability in the general population: Results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 49, 1265–1270 (2007).

    Article  CAS  Google Scholar 

  9. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P. & Loew, L. M. Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys. J. 53, 785–794 (1988).

    Article  CAS  Google Scholar 

  10. Kadenbach, B., Ramzan, R., Wen, L. & Vogt, S. New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim. Biophys. Acta 1800, 205–212 (2010).

    Article  CAS  Google Scholar 

  11. Yaffe, M. B. Phosphotyrosine-binding domains in signal transduction. Nature Rev. Mol. Cell Biol. 3, 177–186 (2002).

    Article  CAS  Google Scholar 

  12. Hinkle, P. C., Kumar, M. A., Resetar, A. & Harris, D. L. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30, 3576–3582 (1991).

    Article  CAS  Google Scholar 

  13. Acin-Perez, R., Gatti, D. L., Bai, Y. & Manfredi, G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell Metab. 13, 712–719 (2011).

    Article  CAS  Google Scholar 

  14. Lee, I. et al. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J. Biol. Chem. 280, 6094–6100 (2005).

    Article  CAS  Google Scholar 

  15. Helling, S. et al. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol. Cell. Proteomics 7, 1714–1724 (2008).

    Article  CAS  Google Scholar 

  16. Santel, A. et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763–2774 (2003).

    Article  CAS  Google Scholar 

  17. Otera, H., Ishihara, N. & Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833, 1256–1268 (2013).

    Article  CAS  Google Scholar 

  18. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  Google Scholar 

  19. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl Acad. Sci. USA 108, 10190–10195 (2011).

    Article  CAS  Google Scholar 

  20. Smith, T. G. Jr, Lange, G. D. & Marks, W. B. Fractal methods and results in cellular morphology–dimensions, lacunarity and multifractals. J. Neurosci. Methods 69, 123–136 (1996).

    Article  Google Scholar 

  21. Zhou, X., Li, J. & Kucik, D. F. The microtubule cytoskeleton participates in control of β2 integrin avidity. J. Biol. Chem. 276, 44762–44769 (2001).

    Article  CAS  Google Scholar 

  22. Heggeness, M. H., Simon, M. & Singer, S. J. Association of mitochondria with microtubules in cultured cells. Proc. Natl Acad. Sci. USA 75, 3863–3866 (1978).

    Article  CAS  Google Scholar 

  23. Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    Article  CAS  Google Scholar 

  24. Legros, F., Lombes, A., Frachon, P. & Rojo, M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354 (2002).

    Article  CAS  Google Scholar 

  25. Tang, H. L. et al. Vimentin supports mitochondrial morphology and organization. Biochem. J. 410, 141–146 (2008).

    Article  CAS  Google Scholar 

  26. Sachs, F. Stretch-activated ion channels: What are they? Physiology 25, 50–56 (2010).

    Article  CAS  Google Scholar 

  27. Ito, S. et al. Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. Am. J. Respir. Cell Mol. Biol. 43, 26–34 (2010).

    Article  CAS  Google Scholar 

  28. DiPaolo, B. C. & Margulies, S. S. Rho kinase signaling pathways during stretch in primary alveolar epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L992–L1002 (2012).

    Article  CAS  Google Scholar 

  29. Morano, I. et al. Smooth-muscle contraction without smooth-muscle myosin. Nature Cell Biol. 2, 371–375 (2000).

    Article  CAS  Google Scholar 

  30. Parameswaran, H., Lutchen, K. R. & Suki, B. A computational model of the response of adherent cells to stretch and changes in substrate stiffness. J. Appl. Physiol. 116, 825–834 (2014).

    Article  Google Scholar 

  31. Rottenberg, H., Covian, R. & Trumpower, B. L. Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J. Biol. Chem. 284, 19203–19210 (2009).

    Article  CAS  Google Scholar 

  32. Iwakura, T. et al. Sustained enhancement of Ca(2+) influx by glibenclamide induces apoptosis in RINm5F cells. Biochem. Biophys. Res. Commun. 271, 422–428 (2000).

    Article  CAS  Google Scholar 

  33. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Rev. Mol. Cell Biol. 10, 778–790 (2009).

    Article  CAS  Google Scholar 

  34. Arold, S. P., Bartolak-Suki, E. & Suki, B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am. J. Physiol. Lung Cell. Mol. Physiol. 296, L574–L581 (2009).

    Article  CAS  Google Scholar 

  35. Arold, S. P., Suki, B., Alencar, A. M., Lutchen, K. R. & Ingenito, E. P. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L370–L375 (2003).

    Article  CAS  Google Scholar 

  36. Imsirovic, J. et al. A novel device to stretch multiple tissue samples with variable patterns: Application for mRNA regulation in tissue-engineered constructs. Biomatter 3, e24650 (2013).

    Article  Google Scholar 

  37. Morgan, K. Y. & Black, D. L. in Cardiac Tissue Engineering: Methods and Protocols Vol. 1181 (eds Radisic, M. & Black, L. D. III) Ch. 16, 177–187 (Springer, 2014).

    Book  Google Scholar 

  38. Glass, L. Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001).

    Article  CAS  Google Scholar 

  39. Sollers, J. J. III et al. Understanding blood pressure variability: Spectral indices as a function of gender and age. Biomed. Sci. Instrum. 41, 43–47 (2005).

    Google Scholar 

  40. Shi, X., Huang, G., Smith, S. A., Zhang, R. & Formes, K. J. Aging and arterial blood pressure variability during orthostatic challenge. Gerontology 49, 279–286 (2003).

    Article  Google Scholar 

  41. Egi, A., Kawamoto, M., Kurita, S. & Yuge, O. Systolic arterial pressure variability reflects circulating blood volume alterations in hemorrhagic shock in rabbits. Shock 28, 733–740 (2007).

    CAS  Google Scholar 

  42. Booyse, F. M., Sedlak, B. J. & Rafelson, M. E. Jr Culture of arterial endothelial cells: Characterization and growth of bovine aortic cells. Thromb. Diath. Haemorrh. 34, 825–839 (1975).

    Article  CAS  Google Scholar 

  43. Fritze, L. M., Reilly, C. F. & Rosenberg, R. D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J. Cell Biol. 100, 1041–1049 (1985).

    Article  CAS  Google Scholar 

  44. Alford, P. W., Humphrey, J. D. & Taber, L. A. Growth and remodeling in a thick-walled artery model: Effects of spatial variations in wall constituents. Biomech. Model. Mechanobiol. 7, 245–262 (2008).

    Article  Google Scholar 

  45. Venegas, J. G. & Galletti, G. G. Low-pass filtering, a new method of fractal analysis: Application to PET images of pulmonary blood flow. J. Appl. Physiol. 88, 1365–1373 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by NIH HL-098976, HL-11174 and HL-122513.

Author information

Authors and Affiliations

Authors

Contributions

E.B.-S. contributed conceptually, carried out cell studies, biochemical assays, histology, analysed data and wrote the manuscript; J.I. contributed conceptually and carried out the aorta physiology experiments; H.P. contributed conceptually and analysed images; N.M. made measurements; P.G.A. carried out confocal imaging; T.J.W. analysed images; U.F. contributed conceptually as well as with the human data; B.S. contributed conceptually, made measurements, analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Erzsébet Bartolák-Suki or Béla Suki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolák-Suki, E., Imsirovic, J., Parameswaran, H. et al. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function. Nature Mater 14, 1049–1057 (2015). https://doi.org/10.1038/nmat4358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4358

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing