Article | Published:

Synthesis of nanostructures in nanowires using sequential catalyst reactions

Nature Materials volume 14, pages 820825 (2015) | Download Citation

Abstract

Nanowire growth by the vapour–liquid–solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a ‘mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–91 (1964).

  2. 2.

    et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995).

  3. 3.

    , , & Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

  4. 4.

    Self-forming nanoscale devices. Mater. Today 6, 22–31 (October, 2003).

  5. 5.

    , & Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Sci. 34, 83–122 (2004).

  6. 6.

    & Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739–3745 (2008).

  7. 7.

    , , , & Single-crystalline kinked semiconductor nanowire superstructures. Nature Nanotech. 4, 824–829 (2009).

  8. 8.

    , , & Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 6, 319–323 (2006).

  9. 9.

    et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

  10. 10.

    et al. Twinning superlattice formation in GaAs nanowires. ACS Nano 7, 8105–8114 (2013).

  11. 11.

    et al. Formation of compositionally abrupt axial heterojunctions in silicon–germanium nanowires. Science 326, 1247–1250 (2009).

  12. 12.

    , , & High crystal quality wurtzite-zinc blende heterostructures in metal–organic vapor phase epitaxy-grown GaAs nanowires. Nano Res. 5, 470–476 (2012).

  13. 13.

    et al. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nature Nanotech. 4, 50–55 (2009).

  14. 14.

    Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

  15. 15.

    , , , & Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010).

  16. 16.

    et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

  17. 17.

    , , , & Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

  18. 18.

    , , , & Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010).

  19. 19.

    et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–166 (2008).

  20. 20.

    Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73, 114501 (2010).

  21. 21.

    & Thermal oxidation of nickel disilicide. Appl. Phys. Lett. 40, 175–177 (1982).

  22. 22.

    , , , & Measurement of local Si-nanowire growth kinetics using in situ transmission electron microscopy of heated cantilevers. Small 6, 2058–2064 (2010).

  23. 23.

    et al. Gold catalyzed nickel disilicide formation: A new solid–liquid–solid phase growth mechanism. Nano Lett. 13, 6009–6015 (2013).

  24. 24.

    , , & The growth of Si nanowires in UHVTEM and Cs-corrected ETEM. Microsc. Microanal. 18(S2), 1084–1085 (2012).

  25. 25.

    et al. An off-normal fibre-like texture in thin films on single-crystal substrates. Nature 426, 641–645 (2003).

  26. 26.

    et al. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 107, 025503 (2011).

  27. 27.

    , & Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. J. Phys. Chem. C 115, 4413–4417 (2011).

  28. 28.

    et al. Determination of size effects during the phase transition of a nanoscale Au–Si eutectic. Phys. Rev. Lett. 103, 155701 (2009).

  29. 29.

    et al. Kinetics of individual nucleation events observed in nanoscale vapor–liquid–solid growth. Science 322, 1070–1073 (2008).

  30. 30.

    et al. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Mater. 7, 372–375 (2008).

  31. 31.

    et al. The morphology of axial and branched nanowire heterostructures. Nano Lett. 7, 1817–1822 (2007).

  32. 32.

    , & Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

  33. 33.

    , , , & Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2010).

  34. 34.

    et al. Longwave plasmonics on doped silicon and silicides. Opt. Express 16, 6507–6514 (2008).

  35. 35.

    , & Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

  36. 36.

    & The theory of hot-electron photoemission in Schottky-barrier IR detectors. IEEE Trans. Electron Devices 32, 33–39 (1985).

  37. 37.

    et al. An invisible metal–semiconductor photodetector. Nature Photon. 6, 380–385 (2012).

  38. 38.

    et al. A silicon nanowire photodetector using Au plasmonic nanoantennas. Nano Convergence 1, 1–7 (2014).

  39. 39.

    et al. Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p–n junction. Appl. Phys. Lett. 100, 061109 (2012).

  40. 40.

    et al. Infrared photodetectors with tailorable response due to resonant plasmon absorption in epitaxial silicide particles embedded in silicon. Appl. Phys. Lett. 62, 1774–1776 (1993).

  41. 41.

    , , & PtSi clustering in silicon probed by transport spectroscopy. Phys. Rev. X 3, 041025 (2013).

  42. 42.

    & Chemical Vapor Deposition 1st edn (ASM International, 2001).

Download references

Acknowledgements

Supported by the National Science Foundation under Grants No. DMR-0606395 and 0907483 (Y.-C.C.), ERC Grant 279342: InSituNANO (F.P. and S.H.), the National Science Council of Taiwan under Grant No. NSC-101-2112-M-009-021-MY3 (Y.-C.C.), the Center for Interdisciplinary Science under the MOE-ATU project for NCTU (Y.-C.C.) and the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886 (D.Z. and E.A.S.). The authors acknowledge A. Gamalski for assistance with high-resolution imaging, C. Czarnik for assistance with image processing and A. Ellis for technical support.

Author information

Affiliations

  1. Department of Engineering, University of Cambridge, 9 J. J. Thomson Avenue Cambridge CB3 0FA, UK

    • F. Panciera
    •  & S. Hofmann
  2. IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

    • F. Panciera
    • , Y.-C. Chou
    • , M. C. Reuter
    •  & F. M. Ross
  3. Department of Electrophysics, National Chiao Tung University, 1001 University Road Hsinchu City 300, Taiwan

    • Y.-C. Chou
  4. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA

    • Y.-C. Chou
    • , D. Zakharov
    •  & E. A. Stach

Authors

  1. Search for F. Panciera in:

  2. Search for Y.-C. Chou in:

  3. Search for M. C. Reuter in:

  4. Search for D. Zakharov in:

  5. Search for E. A. Stach in:

  6. Search for S. Hofmann in:

  7. Search for F. M. Ross in:

Contributions

F.P. and Y.-C.C. performed experiments and data analysis, M.C.R. developed the UHV-TEM technique, D.Z. and E.A.S. performed high-resolution ETEM experiments, and S.H. and F.M.R. designed the experiments and coordinated the analysis.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to S. Hofmann or F. M. Ross.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Videos

  1. 1.

    Supplementary Movie 1

    Supplementary Movie 1

  2. 2.

    Supplementary Movie 2

    Supplementary Movie 2

  3. 3.

    Supplementary Movie 3

    Supplementary Movie 3

  4. 4.

    Supplementary Movie 4

    Supplementary Movie 4

  5. 5.

    Supplementary Movie 5

    Supplementary Movie 5

  6. 6.

    Supplementary Movie 6

    Supplementary Movie 6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4352