Letter | Published:

Brownian diffusion of a partially wetted colloid

Nature Materials volume 14, pages 908911 (2015) | Download Citation

Subjects

Abstract

The dynamics of colloidal particles at interfaces between two fluids plays a central role in microrheology1, encapsulation2, emulsification3, biofilm formation4, water remediation5 and the interface-driven assembly of materials6. Common intuition corroborated by hydrodynamic theories7,8,9 suggests that such dynamics is governed by a viscous force lower than that observed in the more viscous fluid. Here, we show experimentally that a particle straddling an air/water interface feels a large viscous drag that is unexpectedly larger than that measured in the bulk. We suggest that such a result arises from thermally activated fluctuations of the interface at the solid/air/liquid triple line and their coupling to the particle drag through the fluctuation–dissipation theorem. Our findings should inform approaches for improved control of the kinetically driven assembly of anisotropic particles10 with a large triple-line-length/particle-size ratio, and help to understand the formation and structure of such arrested materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).

  2. 2.

    et al. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

  3. 3.

    , & Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503–546 (2003).

  4. 4.

    et al. Bacteria use type IV pili to walk upright and detach from surfaces. Science 330, 197 (2010).

  5. 5.

    Binks, B. P. & Horozov, T. S. (eds) in Colloidal Particles at Liquid Interfaces 1st edn (Cambridge Univ. Press, 2006).

  6. 6.

    & Particles at Fluid Interfaces and Membranes: Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-Dimensional Arrays Vol. 10 (Elsevier, 2001).

  7. 7.

    , , & Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175, 36–45 (1995).

  8. 8.

    Particle motion near and inside an interface. J. Fluid Mech. 575, 333–357 (2007).

  9. 9.

    , & The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451–475 (2006).

  10. 10.

    , , & Capillary interactions between anisotropic particles. Soft Matter 8, 9957–9971 (2012).

  11. 11.

    , , & Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993).

  12. 12.

    Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces. Langmuir 19, 7970–7976 (2003).

  13. 13.

    et al. Capillary force on a micrometric sphere trapped at a fluid interface exhibiting arbitrary curvature gradients. Phys. Rev. Lett. 111, 058302 (2013).

  14. 14.

    & Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

  15. 15.

    Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

  16. 16.

    , , , & Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Mater. 11, 138–142 (2011).

  17. 17.

    et al. Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101 (2013).

  18. 18.

    Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris 146, 530–532 (1908).

  19. 19.

    The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1–13 (2006).

  20. 20.

    Light scattering from liquid interfaces. Adv. Colloid Interface Sci. 2, 39–64 (1968).

  21. 21.

    , & Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

  22. 22.

    Wettability 1st edn (CRC Press, 1993).

  23. 23.

    & The influence of solid–liquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 96, 21–36 (2002).

  24. 24.

    , & Ellipsoidal particles at fluid interfaces. Eur. Phys. J. E 26, 151–160 (2008).

  25. 25.

    The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).

  26. 26.

    , & Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: Jump of the effective surface tension at the mesh size. Phys. Rev. Lett. 92, 018102 (2004).

  27. 27.

    & Local orientations of fluctuating fluid interfaces. J. Chem. Phys. 123, 204723 (2005).

  28. 28.

    & Interfacial roughening in nonideal fluids: Dynamic scaling in the weak-and strong-damping regime. Phys. Rev. E 87, 022407 (2013).

  29. 29.

    , & Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623 (1965).

  30. 30.

    , & Wetting and contact lines of micrometer-sized ellipsoids. Phys. Rev. Lett. 97, 018304 (2006).

  31. 31.

    , , & Contact angles of microellipsoids at fluid interfaces. Langmuir 30, 4289–4300 (2014).

  32. 32.

    et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006).

  33. 33.

    & Shear viscosity of Langmuir monolayers in the low-density limit. Phys. Rev. Lett. 90, 126104 (2003).

  34. 34.

    & Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Europhys. Lett. 84, 28003 (2008).

  35. 35.

    , , , & Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl Acad. Sci. USA 108, 20923–20928 (2011).

Download references

Acknowledgements

The authors acknowledge discussions with M. Abkarian and W. Kob and the editing help of J. Palmeri. Financial support from the French Agence Nationale de la Recherche (Contract No. ANR-07-BLAN-0243-SURFOIDS), from Conseil Scientifique of Université Montpellier 2 (G.B.), and from grant Egide PHC Uthique 25006XL (M.M.) is also acknowledged.

Author information

Affiliations

  1. Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, 34000 Montpellier, France

    • Giuseppe Boniello
    • , Christophe Blanc
    • , Denys Fedorenko
    • , Mayssa Medfai
    • , Nadia Ben Mbarek
    • , Martin In
    • , Michel Gross
    • , Antonio Stocco
    •  & Maurizio Nobili

Authors

  1. Search for Giuseppe Boniello in:

  2. Search for Christophe Blanc in:

  3. Search for Denys Fedorenko in:

  4. Search for Mayssa Medfai in:

  5. Search for Nadia Ben Mbarek in:

  6. Search for Martin In in:

  7. Search for Michel Gross in:

  8. Search for Antonio Stocco in:

  9. Search for Maurizio Nobili in:

Contributions

M.I., C.B. and M.N. conceived the experiments. G.B., D.F., C.B. M.M. and N.B.M. performed the experiments. G.B., M.N., A.S., M.G. and C.B. developed the model. M.N. supervised all parts of the project. G.B. and M.N. wrote the paper with input from M.I., C.B., A.S. and M.G.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Maurizio Nobili.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4348