Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Brownian diffusion of a partially wetted colloid

Subjects

Abstract

The dynamics of colloidal particles at interfaces between two fluids plays a central role in microrheology1, encapsulation2, emulsification3, biofilm formation4, water remediation5 and the interface-driven assembly of materials6. Common intuition corroborated by hydrodynamic theories7,8,9 suggests that such dynamics is governed by a viscous force lower than that observed in the more viscous fluid. Here, we show experimentally that a particle straddling an air/water interface feels a large viscous drag that is unexpectedly larger than that measured in the bulk. We suggest that such a result arises from thermally activated fluctuations of the interface at the solid/air/liquid triple line and their coupling to the particle drag through the fluctuation–dissipation theorem. Our findings should inform approaches for improved control of the kinetically driven assembly of anisotropic particles10 with a large triple-line-length/particle-size ratio, and help to understand the formation and structure of such arrested materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contact angle of microparticles at an air/liquid interface.
Figure 2: Translational viscous-drag ratio rT = γT/ΓT of spherical particles at a fluid interface versus contact angle θ.
Figure 3: Interface fluctuations at the triple line.
Figure 4: Rotational drag of an ellipsoidal particle at the interface.

Similar content being viewed by others

References

  1. Squires, T. & Mason, T. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).

    Article  Google Scholar 

  2. Dinsmore, A. et al. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006–1009 (2002).

    Article  CAS  Google Scholar 

  3. Aveyard, R., Binks, B. & Clint, J. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100, 503–546 (2003).

    Article  Google Scholar 

  4. Gibiansky, M. et al. Bacteria use type IV pili to walk upright and detach from surfaces. Science 330, 197 (2010).

    Article  CAS  Google Scholar 

  5. Binks, B. P. & Horozov, T. S. (eds) in Colloidal Particles at Liquid Interfaces 1st edn (Cambridge Univ. Press, 2006).

  6. Kralchevsky, P. & Nagayama, K. Particles at Fluid Interfaces and Membranes: Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-Dimensional Arrays Vol. 10 (Elsevier, 2001).

    Google Scholar 

  7. Danov, K., Aust, R., Durst, F. & Lange, U. Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle. J. Colloid Interface Sci. 175, 36–45 (1995).

    Article  CAS  Google Scholar 

  8. Pozrikidis, C. Particle motion near and inside an interface. J. Fluid Mech. 575, 333–357 (2007).

    Article  Google Scholar 

  9. Fischer, T. M., Dhar, P. & Heinig, P. The viscous drag of spheres and filaments moving in membranes or monolayers. J. Fluid Mech. 558, 451–475 (2006).

    Article  Google Scholar 

  10. Botto, L., Lewandowski, E., Cavallaro, M. & Stebe, K. Capillary interactions between anisotropic particles. Soft Matter 8, 9957–9971 (2012).

    Article  CAS  Google Scholar 

  11. Ho, C., Keller, A., Odell, J. & Ottewill, R. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993).

    Article  CAS  Google Scholar 

  12. Paunov, V. Novel method for determining the three-phase contact angle of colloid particles adsorbed at air–water and oil–water interfaces. Langmuir 19, 7970–7976 (2003).

    Article  CAS  Google Scholar 

  13. Blanc, C. et al. Capillary force on a micrometric sphere trapped at a fluid interface exhibiting arbitrary curvature gradients. Phys. Rev. Lett. 111, 058302 (2013).

    Article  Google Scholar 

  14. Crocker, J. & Grier, D. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  CAS  Google Scholar 

  15. De Gennes, P. G. Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

    Article  CAS  Google Scholar 

  16. Kaz, D. M., McGorty, R., Mani, M., Brenner, M. P. & Manoharan, V. N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Mater. 11, 138–142 (2011).

    Article  Google Scholar 

  17. Guo, S. et al. Direct measurement of friction of a fluctuating contact line. Phys. Rev. Lett. 111, 026101 (2013).

    Article  Google Scholar 

  18. Langevin, P. Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris 146, 530–532 (1908).

    CAS  Google Scholar 

  19. Blake, T. The physics of moving wetting lines. J. Colloid Interface Sci. 299, 1–13 (2006).

    Article  CAS  Google Scholar 

  20. Vrij, A. Light scattering from liquid interfaces. Adv. Colloid Interface Sci. 2, 39–64 (1968).

    Article  CAS  Google Scholar 

  21. Aarts, D., Schmidt, M. & Lekkerkerker, H. Direct visual observation of thermal capillary waves. Science 304, 847–850 (2004).

    Article  CAS  Google Scholar 

  22. Berg, J. C. Wettability 1st edn (CRC Press, 1993).

    Book  Google Scholar 

  23. Blake, T. & De Coninck, J. The influence of solid–liquid interactions on dynamic wetting. Adv. Colloid Interface Sci. 96, 21–36 (2002).

    Article  CAS  Google Scholar 

  24. Lehle, H., Noruzifar, E. & Oettel, M. Ellipsoidal particles at fluid interfaces. Eur. Phys. J. E 26, 151–160 (2008).

    Article  CAS  Google Scholar 

  25. Iler, R. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).

    Google Scholar 

  26. Fournier, J.-B., Lacoste, D. & Raphael, E. Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: Jump of the effective surface tension at the mesh size. Phys. Rev. Lett. 92, 018102 (2004).

    Article  Google Scholar 

  27. Mecke, K. & Dietrich, S. Local orientations of fluctuating fluid interfaces. J. Chem. Phys. 123, 204723 (2005).

    Article  Google Scholar 

  28. Gross, M. & Varnik, F. Interfacial roughening in nonideal fluids: Dynamic scaling in the weak-and strong-damping regime. Phys. Rev. E 87, 022407 (2013).

    Article  Google Scholar 

  29. Buff, F., Lovett, R. & Stillinger, F. Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621–623 (1965).

    Article  Google Scholar 

  30. Loudet, J., Yodh, A. & Pouligny, B. Wetting and contact lines of micrometer-sized ellipsoids. Phys. Rev. Lett. 97, 018304 (2006).

    Article  CAS  Google Scholar 

  31. Coertjens, S., Moldenaers, P., Vermant, J. & Isa, L. Contact angles of microellipsoids at fluid interfaces. Langmuir 30, 4289–4300 (2014).

    Article  CAS  Google Scholar 

  32. Fleire, S. et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006).

    Article  CAS  Google Scholar 

  33. Sickert, M. & Rondelez, F. Shear viscosity of Langmuir monolayers in the low-density limit. Phys. Rev. Lett. 90, 126104 (2003).

    Article  Google Scholar 

  34. Chen, W. & Tong, P. Short-time self-diffusion of weakly charged silica spheres at aqueous interfaces. Europhys. Lett. 84, 28003 (2008).

    Article  Google Scholar 

  35. Cavallaro, M., Botto, L., Lewandowski, E., Wang, M. & Stebe, K. Curvature-driven capillary migration and assembly of rod-like particles. Proc. Natl Acad. Sci. USA 108, 20923–20928 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with M. Abkarian and W. Kob and the editing help of J. Palmeri. Financial support from the French Agence Nationale de la Recherche (Contract No. ANR-07-BLAN-0243-SURFOIDS), from Conseil Scientifique of Université Montpellier 2 (G.B.), and from grant Egide PHC Uthique 25006XL (M.M.) is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.I., C.B. and M.N. conceived the experiments. G.B., D.F., C.B. M.M. and N.B.M. performed the experiments. G.B., M.N., A.S., M.G. and C.B. developed the model. M.N. supervised all parts of the project. G.B. and M.N. wrote the paper with input from M.I., C.B., A.S. and M.G.

Corresponding author

Correspondence to Maurizio Nobili.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boniello, G., Blanc, C., Fedorenko, D. et al. Brownian diffusion of a partially wetted colloid. Nature Mater 14, 908–911 (2015). https://doi.org/10.1038/nmat4348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing