Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces

Abstract

Although adhesive interactions between cells and nanostructured interfaces have been studied extensively1,2,3,4,5,6, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography7 to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells’ focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nanoscale craters were fabricated by direct-write laser ablation lithography.
Figure 2: Nanocrater-patterned interfaces repel cell colonization.
Figure 3: Time-lapse phase-contrast images of NIH3T3 cells cultured on a spacing-gradient pattern.
Figure 4: Effect of nanocrater size on cell migration and formation of a cell-repellent zone.
Figure 5: Focal-adhesion size distribution correlates with migration descriptors.

References

  1. Bettinger, C. J., Langer, R. & Borenstein, J. T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. 48, 5406–5415 (2009).

    Article  CAS  Google Scholar 

  2. Biggs, M. J. P., Richards, R. G. & Dalby, M. J. Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomed. Nanotech. Biol. Med. 6, 619–633 (2010).

    Article  CAS  Google Scholar 

  3. Curtis, A. S. G. et al. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans. Nanobiosci. 3, 61–65 (2004).

    Article  CAS  Google Scholar 

  4. Karuri, N. W., Porri, T. J., Albrecht, R. M., Murphy, C. J. & Nealey, P. F. Nano- and microscale holes modulate cell-substrate adhesion, cytoskeletal organization, and -beta 1 integrin localization in SV40 human corneal epithelial cells. IEEE Trans. Nanobiosci. 5, 273–280 (2006).

    Article  Google Scholar 

  5. Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Mater. 6, 997–1003 (2007).

    Article  CAS  Google Scholar 

  6. McMurray, R. J. et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Mater. 10, 637–644 (2011).

    Article  CAS  Google Scholar 

  7. Perry, M. D. et al. Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys. 85, 6803–6810 (1999).

    Article  CAS  Google Scholar 

  8. Jeon, H. et al. Chemical patterning of ultrathin polymer films by direct-write multiphoton lithography. J. Am. Chem. Soc. 133, 6138–6141 (2011).

    Article  CAS  Google Scholar 

  9. Tourovskaia, A. et al. Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 19, 4754–4764 (2003).

    Article  CAS  Google Scholar 

  10. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25, 5947–5954 (2004).

    Article  CAS  Google Scholar 

  11. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  12. Park, J. et al. TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5, 666–671 (2009).

    Article  CAS  Google Scholar 

  13. Jeon, H., Hidai, H., Hwang, D. J., Healy, K. E. & Grigoropoulos, C. P. The effect of micronscale anisotropic cross patterns on fibroblast migration. Biomaterials 31, 4286–4295 (2010).

    Article  CAS  Google Scholar 

  14. Doyle, A., Wang, F., Matsumoto, K. & Yamada, K. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    Article  CAS  Google Scholar 

  15. Richert, L. et al. Surface nanopatterning to control cell growth. Adv. Mater. 20, 1488–1492 (2008).

    Article  CAS  Google Scholar 

  16. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  17. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  18. Le Saux, G., Magenau, A., Boecking, T., Gaus, K. & Gooding, J. J. The relative importance of topography and RGD ligand density for endothelial cell adhesion. PLoS ONE 6, e21869 (2011).

    Article  CAS  Google Scholar 

  19. Charest, J. L., Eliason, M. T., Garcia, A. J. & King, W. P. Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. Biomaterials 27, 2487–2494 (2006).

    Article  CAS  Google Scholar 

  20. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  21. Grigoropoulos, C. P. Transport in Laser Microfabrication: Fundamentals and Applications (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  22. Kim, D. H. & Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB J. 27, 1351–1361 (2013).

    Article  CAS  Google Scholar 

  23. Tadokoro, S. et al. Talin binding to integrin beta tails: A final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  24. Bouaouina, M., Lad, Y. & Calderwood, D. A. The N-terminal domains of talin cooperate with the phosphotyrosine binding-like domain to activate beta 1 and beta 3 integrins. J. Biol. Chem. 283, 6118–6125 (2008).

    Article  CAS  Google Scholar 

  25. Coyer, S. R. et al. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 125, 5110–5123 (2012).

    Article  CAS  Google Scholar 

  26. Rhee, S., Jiang, H., Ho, C. H. & Grinnell, F. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc. Natl Acad. Sci. USA 104, 5425–5430 (2007).

    Article  CAS  Google Scholar 

  27. Park, S. et al. Motion to form a quorum. Science 301, 188–188 (2003).

    Article  CAS  Google Scholar 

  28. Carter, S. B. Haptotaxis and mechanism of cell motility. Nature 213, 256–260 (1967).

    Article  CAS  Google Scholar 

  29. Stokes, C. L., Lauffenburger, D. A. & Williams, S. K. Migration of individual microvessel endothelial cells stochastic model and parameter measurement. J. Cell Sci. 99, 419–430 (1991).

    Google Scholar 

  30. Dimilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M. & Lauffenburger, D. A. Maximal migration of human smooth-muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants GM085754 and HL096525. We thank Y. J. Kim of KIST Europe for QCM-D measurements. Talin constructs were kindly provided by D. Calderwood, Yale University.

Author information

Authors and Affiliations

Authors

Contributions

C.P.G., K.E.H. and H.J. conceived and designed the sample fabrication and cell-migration experiments; C.P.G. supervised the laser fabrication; K.E.H. supervised the biological experiments and analysis; H.J. and S.K. fabricated the samples, and performed the cell-adhesion and -migration experiments; S.K. and P.L. analysed cell migration; W.M.R. performed focal-adhesion experiments and analysis. H.J. and K.E.H. wrote the manuscript with discussions and improvements from all authors. C.P.G. and K.E.H. designed and financially supported the study.

Corresponding authors

Correspondence to Costas P. Grigoropoulos or Kevin E. Healy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3274 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 17279 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 19974 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 20921 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 20288 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 6209 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, H., Koo, S., Reese, W. et al. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nature Mater 14, 918–923 (2015). https://doi.org/10.1038/nmat4342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing