Letter | Published:

Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface

Nature Materials volume 14, pages 883888 (2015) | Download Citation

Abstract

Static strain in complex oxide heterostructures1,2 has been extensively used to engineer electronic and magnetic properties at equilibrium3. In the same spirit, deformations of the crystal lattice with light may be used to achieve functional control across heterointerfaces dynamically4. Here, by exciting large-amplitude infrared-active vibrations in a LaAlO3 substrate we induce magnetic order melting in a NdNiO3 film across a heterointerface. Femtosecond resonant soft X-ray diffraction is used to determine the spatiotemporal evolution of the magnetic disordering. We observe a magnetic melt front that propagates from the substrate interface into the film, at a speed that suggests electronically driven motion. Light control and ultrafast phase front propagation at heterointerfaces may lead to new opportunities in optomagnetism, for example by driving domain wall motion to transport information across suitably designed devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).

  2. 2.

    et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

  3. 3.

    et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

  4. 4.

    et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

  5. 5.

    , , , & Magnetic-field-induced metal–insulator phenomena in Pr1−xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689–R1692 (1996).

  6. 6.

    , , & Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

  7. 7.

    , , , & Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995).

  8. 8.

    , , & Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3. Phys. Rev. B 47, 12357–12360 (1993).

  9. 9.

    , , & Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

  10. 10.

    et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

  11. 11.

    et al. Time evolution of the electronic structure of 1T-TaS2 through the insulator–metal transition. Phys. Rev. Lett. 97, 067402 (2006).

  12. 12.

    et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

  13. 13.

    et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

  14. 14.

    et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104R (2011).

  15. 15.

    et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

  16. 16.

    et al. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling. Nature Mater. 13, 705–711 (2014).

  17. 17.

    et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nature Photon. 5, 485–488 (2011).

  18. 18.

    et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

  19. 19.

    et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

  20. 20.

    Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).

  21. 21.

    , & Metal–insulator transitions in NdNiO3 thin films. Phys. Rev. B 62, 7892–7900 (2000).

  22. 22.

    et al. Induced noncollinear magnetic order of Nd3+ in NdNiO3 observed by resonant soft x-ray diffraction. Phys. Rev. B 77, 115138 (2008).

  23. 23.

    et al. Photoinduced melting of magnetic order in the correlated electron insulator NdNiO3. Phys. Rev. B 88, 220401 (2013).

  24. 24.

    , , , & Laser-induced coherent acoustical phonons mechanisms in the metal–insulator transition compound NdNiO3: Thermal and nonthermal processes. Phys. Rev. B 79, 094303 (2009).

  25. 25.

    , , , & Thermal and non-thermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B 58, R11805–R11808 (1998).

  26. 26.

    et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys. 7, 854–856 (2011).

  27. 27.

    et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun. 169, 24–27 (2013).

  28. 28.

    , & Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

  29. 29.

    , , , & Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

  30. 30.

    & Single-particle excitations in magnetic insulators. Phys. Rev. B 2, 1324–1338 (1970).

  31. 31.

    , & A new type of auto-localized state of a conduction electron in an antiferromagnetic semiconductor. Sov. Phys. JETP 27, 836–838 (1968).

  32. 32.

    , & Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  33. 33.

    et al. Electric-field control of the metal–insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).

  34. 34.

    et al. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser. Rev. Sci. Instrum. 83, 043107 (2012).

  35. 35.

    et al. Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump–probe experiments. Rev. Sci. Instrum. 82, 073303 (2011).

Download references

Acknowledgements

We thank A. Frano for helpful discussions. Portions of this research were carried out on the SXR Instrument at the Linac Coherent Light Source (LCLS), a division of SLAC National Accelerator Laboratory and an Office of Science user facility operated by Stanford University for the US Department of Energy. The SXR Instrument is financially supported by a consortium whose membership includes the LCLS, Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES), Lawrence Berkeley National Laboratory (LBNL, contract No. DE-AC02-05CH11231), University of Hamburg through the BMBF priority program FSP 301, and the Center for Free Electron Laser Science (CFEL). The research leading to these results has received financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement no. 319286 (Q-MAC) and no. 281403 (FEMTOSPIN). Work performed at SIMES was further supported by US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract No. DE-AC02-76SF00515. Work at Brookhaven National Laboratory was financially supported by the Department of Energy, Division of Materials Science and Engineering, under contract No. DE-AC02-98CH10886.

Author information

Author notes

    • M. Först
    •  & A. D. Caviglia

    These authors contributed equally to this work.

    • P. Zubko

    Present address: London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1H 0AH, UK.

Affiliations

  1. Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany

    • M. Först
    • , R. Mankowsky
    • , V. Khanna
    • , H. Bromberger
    •  & A. Cavalleri
  2. Center for Free Electron Laser Science, 22761 Hamburg, Germany

    • M. Först
    • , R. Mankowsky
    • , H. Bromberger
    •  & A. Cavalleri
  3. Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

    • A. D. Caviglia
  4. Department of Quantum Matter Physics, Université de Genève, 1211 Genève, Switzerland

    • R. Scherwitzl
    • , P. Zubko
    •  & J.-M. Triscone
  5. Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK

    • V. Khanna
    • , S. R. Clark
    • , D. Jaksch
    •  & A. Cavalleri
  6. Diamond Light Source, Didcot OX11 0DE, UK

    • V. Khanna
    •  & S. S. Dhesi
  7. Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

    • S. B. Wilkins
    •  & J. P. Hill
  8. Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA

    • Y.-D. Chuang
  9. The Stanford Institute for Materials and Energy Sciences (SIMES), Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory and Stanford University, Menlo Park, California 94025, USA

    • W. S. Lee
  10. Linac Coherent Light Source, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, California 94025, USA

    • W. F. Schlotter
    • , J. J. Turner
    • , G. L. Dakovski
    • , M. P. Minitti
    •  & J. Robinson
  11. Centre for Quantum Technologies, National University of Singapore, Singapore 117543, Singapore

    • S. R. Clark
    •  & D. Jaksch

Authors

  1. Search for M. Först in:

  2. Search for A. D. Caviglia in:

  3. Search for R. Scherwitzl in:

  4. Search for R. Mankowsky in:

  5. Search for P. Zubko in:

  6. Search for V. Khanna in:

  7. Search for H. Bromberger in:

  8. Search for S. B. Wilkins in:

  9. Search for Y.-D. Chuang in:

  10. Search for W. S. Lee in:

  11. Search for W. F. Schlotter in:

  12. Search for J. J. Turner in:

  13. Search for G. L. Dakovski in:

  14. Search for M. P. Minitti in:

  15. Search for J. Robinson in:

  16. Search for S. R. Clark in:

  17. Search for D. Jaksch in:

  18. Search for J.-M. Triscone in:

  19. Search for J. P. Hill in:

  20. Search for S. S. Dhesi in:

  21. Search for A. Cavalleri in:

Contributions

A.D.C., M.F. and A.C. conceived this project. M.F., A.D.C., R.M., V.K., S.B.W., S.S.D. and J.P.H. performed the experiment at the LCLS, supported by W.F.S., J.J.T. and G.L.D. (beamline), M.P.M. and J.R. (laser), Y.-D.C. and W.S.L. (experimental endstation). The sample was grown by R.S., P.Z. and J.-M.T. M.F. and A.D.C. analysed the data with help from H.B. S.R.C. and D.J. provided the model Hamiltonian theory. M.F., A.D.C. and A.C. wrote the manuscript, with feedback from all co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Först.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4341