Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A kirigami approach to engineering elasticity in nanocomposites through patterned defects


Efforts to impart elasticity and multifunctionality in nanocomposites focus mainly on integrating polymeric1,2 and nanoscale3,4,5 components. Yet owing to the stochastic emergence and distribution of strain-concentrating defects and to the stiffening of nanoscale components at high strains, such composites often possess unpredictable strain–property relationships. Here, by taking inspiration from kirigami—the Japanese art of paper cutting—we show that a network of notches6,7,8 made in rigid nanocomposite and other composite sheets by top-down patterning techniques prevents unpredictable local failure and increases the ultimate strain of the sheets from 4 to 370%. We also show that the sheets’ tensile behaviour can be accurately predicted through finite-element modelling. Moreover, in marked contrast to other stretchable conductors3,4,5, the electrical conductance of the stretchable kirigami sheets is maintained over the entire strain regime, and we demonstrate their use to tune plasma-discharge phenomena. The unique properties of kirigami nanocomposites as plasma electrodes open up a wide range of novel technological solutions for stretchable electronics and optoelectronic devices, among other application possibilities.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Microscale kirigami patterns.
Figure 2: Stress–strain curves for model macroscale kirigami sheet (green), non-patterned sheet (grey curve), and a sheet with a single notch in the middle (dashed blue).
Figure 3: Experimental and FEM-calculated stress–strain curves for macroscale kirigami sheets with variable unit-cell parameters.
Figure 4: Stress-concentration visualization in FEM.
Figure 5: Conducting kirigami nanocomposites.


  1. Khang, D-Y. et al. Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett. 8, 124–130 (2008).

    CAS  Article  Google Scholar 

  2. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    CAS  Article  Google Scholar 

  3. Zhang, Y. et al. Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027–3031 (2010).

    CAS  Article  Google Scholar 

  4. Chun, K-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotech. 5, 853–857 (2010).

    CAS  Article  Google Scholar 

  5. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–64 (2013).

    CAS  Article  Google Scholar 

  6. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Article  Google Scholar 

  7. Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012).

    CAS  Article  Google Scholar 

  8. Meyers, M., McKittrick, J. & Chen, P. Structural biological materials: Critical mechanics–materials connections. Science 339, 773–779 (2013).

    CAS  Article  Google Scholar 

  9. Lee, P. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 24, 5671–5678 (2014).

    CAS  Article  Google Scholar 

  10. Khayer Dastjerdi, A., Rabiei, R. & Barthelat, F. The weak interfaces within tough natural composites: Experiments on three types of nacre. J. Mech. Behav. Biomed. Mater. 19, 50–60 (2013).

    Article  Google Scholar 

  11. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    CAS  Article  Google Scholar 

  12. Barthelat, F. & Rabiei, R. Toughness amplification in natural composites. J. Mech. Phys. Solids 59, 829–840 (2011).

    Article  Google Scholar 

  13. Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl Acad. Sci. USA 111, 2453–2458 (2014).

    CAS  Article  Google Scholar 

  14. Mirkhalaf, M., Dastjerdi, A. K. & Barthelat, F. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Commun. 5, 3166 (2014).

    CAS  Article  Google Scholar 

  15. Kim, J. Y. & Kotov, N. A. Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014).

    CAS  Article  Google Scholar 

  16. Jancar, J. et al. Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51, 3321–3343 (2010).

    CAS  Article  Google Scholar 

  17. Liff, S. M., Kumar, N. & McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Mater. 6, 76–83 (2007).

    CAS  Article  Google Scholar 

  18. Vaia, R. A. & Wagner, H. D. Framework for nanocomposites. Mater. Today 7, 32–37 (November, 2004).

    CAS  Article  Google Scholar 

  19. Blees, M., Rose, P., Barnard, A., Roberts, S. & McEuen, P. L. Graphene Kirigami (2014);

  20. Castle, T. et al. Making the cut: Lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014).

    Article  Google Scholar 

  21. Rossiter, J. & Sareh, S. in Proc. SPIE (ed. Lakhtakia, A.) 90550G (Bioinspiration, Biomimetics, and Bioreplication, Vol. 9055, 2014).

    Google Scholar 

  22. Qi, Z., Park, H. S. & Campbell, D. K. Highly deformable graphene kirigami. Preprint at (2014)

  23. Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Mater. 14, 389–393 (2015).

    CAS  Article  Google Scholar 

  24. Mullin, T., Deschanel, S., Bertoldi, K. & Boyce, M. Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301 (2007).

    CAS  Article  Google Scholar 

  25. Zhang, Y. et al. One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Lett. 8, 1192–1196 (2008).

    CAS  Article  Google Scholar 

  26. Zhu, J., Zhang, H. & Kotov, N. A. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. ACS Nano 7, 4818–4829 (2013).

    CAS  Article  Google Scholar 

  27. Holmes, D. P. & Crosby, A. J. Snapping surfaces. Adv. Mater. 19, 3589–3593 (2007).

    CAS  Article  Google Scholar 

  28. Kang, S. H. et al. Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures. Adv. Mater. 25, 3380–3385 (2013).

    CAS  Article  Google Scholar 

  29. Paiva, M. C. et al. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon 42, 2849–2854 (2004).

    CAS  Article  Google Scholar 

  30. Shim, B. S. et al. Multiparameter structural optimization of single-walled carbon nanotube stiffness, and toughness. ACS Nano 3, 1711–1722 (2009).

    CAS  Article  Google Scholar 

Download references


This project was sponsored by NSF Grant #1240264 EFRI-ODISSEI, a joint grant to all senior authors of this work. Parts of the research were also supported by the National Science Foundation, Division of Materials Research Award # DMR 1120923, and by a Simons Investigator award from the Simons Foundation to S.C.G. The authors gratefully acknowledge fruitful discussions with J. R. Barber on the analytical solution of the buckling kirigami systems. T.C.S. thanks S. R. Spurgeon for stimulating discussions, and R. Hower and H. Zhang for assistance in microfabrication. We thank H. Eberhart for his custom glass apparatus and vacuum system. This work was conducted in part in E. M. Arruda’s laboratory, the Electron Microbeam Analysis Laboratory, and the Lurie Nanofabrication Facility at the University of Michigan.

Author information

Authors and Affiliations



T.C.S. carried out the experimental set-up, fabrication and measurements. P.F.D. and P.M.D. performed the finite-element modelling. A.L. performed the beam analysis, laser cutting, and the mechanical cycling experiments on Kapton structures. L.X. carried out the LBL assembly. M.Shlian contributed to fabrication and iteration of designs. M.Shtein, S.C.G., and N.A.K. supervised the work. T.C.S., P.F.D. and N.A.K. originated the study, prepared the manuscript, and all authors contributed to data interpretation, discussions and writing.

Corresponding authors

Correspondence to Max Shtein, Sharon C. Glotzer or Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 656 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shyu, T., Damasceno, P., Dodd, P. et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Mater 14, 785–789 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing