Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing


Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes1,2,3,4,5. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system’s optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the self-regulated liquid-secretion system.
Figure 2: Characterization of the droplet-embedded gel structure.
Figure 3: Self-regulated secretion by the droplet-embedded gel films.
Figure 4: Self-healing of droplet-embedded gel materials.


  1. 1

    Tokarev, I. & Minko, S. Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22, 3446–3462 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Esser-Kahn, A. P., Odom, S. A., Sottos, N. R., White, S. R. & Moore, J. S. Triggered release from polymer capsules. Macromolecules 44, 5539–5553 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Timko, B. P. et al. Advances in drug delivery. Annu. Rev. Mater. Res. 41, 1–20 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Mater. 12, 991–1003 (2013).

    CAS  Article  Google Scholar 

  5. 5

    van Dongen, S. F. M. et al. Biohybrid polymer capsules. Chem. Rev. 109, 6212–6274 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Miyake, K., Tanaka, T. & McNeil, P. L. Disruption-induced mucus secretion: Repair and protection. PLoS Biol. 4, e276 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Shibasaki, M., Wilson, T. E. & Crandall, C. G. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J. Appl. Physiol. 100, 1692–1701 (2006).

    Article  Google Scholar 

  8. 8

    Thiam, A. R., Farese, R. V. Jr & Walther, T. C. The biophysics and cell biology of lipid droplets. Nature Rev. Mol. Cell Biol. 14, 775–786 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Andreeva, A. V., Kutuzov, M. A. & Voyno-Yasenetkaya, T. A. Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L259–L271 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Jeanrenaud, B. & Rohner-Jeanrenaud, F. Effects of neuropeptides and leptin on nutrient partitioning: Dysregulations in obesity. Annu. Rev. Med. 52, 339–351 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Ashcroft, F. M. & Rorsman, P. KATP channels and islet hormone secretion: New insights and controversies. Nature Rev. Endocrinol. 9, 660–669 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Miyake, K., Tanaka, T. & McNeil, P. L. Disruption-induced mucus secretion: Repair and protection. PLoS Biol. 4, e276 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Gustafsson, J. K. et al. Dynamic changes in mucus thickness and ion secretion during Citrobacter rodentium infection and clearance. PLoS ONE 8, e84430 (2013).

    Article  Google Scholar 

  14. 14

    Delcea, M., Moehwald, H. & Skirtach, A. G. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 63, 730–747 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Liechty, W. B., Kryscio, D. R., Slaughter, B. V. & Peppas, N. A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H-T. & Lin, V. S. Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448–477 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Everett, D. H. Basic Principles of Colloid Science 16–53 (Royal Society of Chemistry, 1988).

    Google Scholar 

  19. 19

    Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Yilgor, E. et al. Fumed silica filled poly(dimethylsiloxane-urea) segmented copolymers: Preparation and properties. Polymer 52, 4189–4198 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Beijer, F. H., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. Self-complementarity achieved through quadruple hydrogen bonding. Angew. Chem. Int. Ed. 37, 75–78 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Rudick, J. G. & Percec, V. Induced helical backbone conformations of self-organizable dendronized polymers. Acc. Chem. Res. 41, 1641–1652 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Okuzono, T., Ozawa, K. y. & Doi, M. Simple model of skin formation caused by solvent evaporation in polymer solutions. Phys. Rev. Lett. 97, 136103 (2006).

    Article  Google Scholar 

  26. 26

    Wang, L., Zhang, Z. & Ding, Y. Photocrosslinking-induced phase separation in evaporative solvents: Formation of skin layers and microspheres. Soft Matter 9, 4455–4463 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Yao, X. et al. Adaptive fluid-infused porous films with tunable transparency and wettability. Nature Mater. 12, 529–534 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Wong, T-S. et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011).

    CAS  Article  Google Scholar 

Download references


The work was supported by the DoE under award # DE-SC0005247 (polymer synthesis and self-repair) and the DoD Office of Naval Research under award N00014-11-1-0641 (wetting and anti-fouling properties). We thank J. Alvarenga for his help with the flow-cell design and measurements, and Y. Hu and M. Aizenberg for discussion.

Author information




J.C. and J.A. conceived the concepts of the research. J.A. supervised the research. J.C. designed and performed the experiments. D.D. performed the theoretical analysis and calculations; K.L. conducted the secretion experiments with mineral and plant oil; A.G., J.C. and J.A. analysed the results; J.C., D.D., A.G. and J.A. wrote the manuscript.

Corresponding author

Correspondence to Joanna Aizenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2219 kb)

Supplementary Information

Supplementary Movie 1 (WMV 2031 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Daniel, D., Grinthal, A. et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nature Mater 14, 790–795 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing