Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of low-energy electron emission in 2D radioactive films

Abstract

High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated1,2. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. 3) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies4,5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of radioactive 125I monolayer film preparation and characterization.
Figure 2: Atomic-scale characterization of radioactive 125I monolayer and nuclear transmutation.
Figure 3: Electron emission from radioactive 125I monolayer.

Similar content being viewed by others

References

  1. Arumainayagam, C. R., Lee, H-L., Nelson, R. B., Haines, D. R. & Gunawardane, R. P. Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1–44 (2010).

    Article  CAS  Google Scholar 

  2. Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M. A. & Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658–1660 (2000).

    Article  Google Scholar 

  3. Pomplun, E., Booz, J. & Charlton, D. E. A Monte Carlo simulation of Auger cascades. Radiat. Res. 111, 533–552 (1987).

    Article  CAS  Google Scholar 

  4. Balagurumoorthy, P., Xu, X., Wang, K., Adelstein, S. J. & Kassis, A. I. Effect of distance between decaying 125I and DNA on Auger-electron induced double-strand break yield. Int. J. Radiat. Biol. 88, 998–1008 (2012).

    Article  CAS  Google Scholar 

  5. McLaughlin, M. F. et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS ONE 8, e54531 (2013).

    Article  CAS  Google Scholar 

  6. Kim, Y-H. et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small 7, 2052–2060 (2011).

    Article  CAS  Google Scholar 

  7. Alizadeh, E., Sanz, A. G., Garcia, G. & Sanche, L. Radiation damage to DNA: The indirect effect of low-energy electrons. J. Phys. Chem. Lett. 4, 820–825 (2013).

    Article  CAS  Google Scholar 

  8. Pimblott, S. & LaVerne, J. Production of low-energy electrons by ionizing radiation. Radiat. Phys. Chem. 76, 1244–1247 (2007).

    Article  CAS  Google Scholar 

  9. Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nature Chem. 2, 274–279 (2010).

    Article  CAS  Google Scholar 

  10. Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances. Chem. Rev. 105, 355–389 (2005).

    Article  CAS  Google Scholar 

  11. Alexander, W. A., Wiens, J. P., Minton, T. K. & Nathanson, G. M. Reactions of solvated electrons initiated by sodium atom ionization at the vacuum–liquid interface. Science 335, 1072–1075 (2012).

    Article  CAS  Google Scholar 

  12. Alizadeh, E. & Sanche, L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 112, 5578–5602 (2012).

    Article  CAS  Google Scholar 

  13. Chen, S. P., Hawley, M., Van Stockum, P. B., Manoharan, H. C. & Bauer, E. D. Surface structure of cleaved (001) USb2 single crystal. Phil. Mag. 89, 1881–1891 (2009).

    Article  CAS  Google Scholar 

  14. Zhu, L. et al. Neutrino-recoil induced desorption. J. Vac. Sci. Technol. A 12, 2037–2044 (1994).

    Article  CAS  Google Scholar 

  15. Verkhoturov, S. et al. Auger stimulated ion desorption of negative ions via K-capture radioactive decay. Phys. Rev. Lett. 87, 37601 (2001).

    Article  CAS  Google Scholar 

  16. Booth, C. et al. Quantifying structural damage from self-irradiation in a plutonium superconductor. Phys. Rev. B 76, 064530 (2007).

    Article  Google Scholar 

  17. Gokhberg, K., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505, 661–663 (2014).

    Article  CAS  Google Scholar 

  18. Ertl, H. H., Feinendegen, L. E. & Heiniger, H. J. Iodine-125, a tracer in cell biology: Physical properties and biological aspects. Phys. Med. Biol. 15, 447–466 (1970).

    Article  CAS  Google Scholar 

  19. Yamada, T., Batina, N. & Itaya, K. Structure of electrochemically deposited iodine adlayer on Au(111) studied by ultrahigh-vacuum instrumentation and in situ STM. J. Phys. Chem. 99, 8817–8823 (1995).

    Article  CAS  Google Scholar 

  20. Huang, L., Zeppenfeld, P., Horch, S. & Comsa, G. Determination of iodine adlayer structures on Au(111) by scanning tunneling microscopy. J. Chem. Phys. 107, 585–591 (1997).

    Article  CAS  Google Scholar 

  21. Chastain, J. & Moulder, J. F. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, 1995).

    Google Scholar 

  22. Katakura, J., Oshima, M., Kitao, K. & Iimura, H. Nuclear data sheets for A = 125. Nucl. Data Sheets 70, 217–314 (1993).

    Article  CAS  Google Scholar 

  23. Nath, A., Prushan, M. J. & Gilbert, J. G. Can super-excited molecules survive fragmentation? J. Radioanal. Nucl. Chem. 247, 589–591 (2001).

    Article  CAS  Google Scholar 

  24. Kolasinski, K. W. Surface Science: Foundations of Catalysis and Nanoscience (Wiley, 2012).

    Book  Google Scholar 

  25. Brun, É., Cloutier, P., Sicard-Roselli, C., Fromm, M. & Sanche, L. Damage induced to DNA by low-energy (0–30 eV) electrons under vacuum and atmospheric conditions. J. Phys. Chem. B 113, 10008–10013 (2009).

    Article  CAS  Google Scholar 

  26. Setua, S., Ouberai, M., Piccirillo, S. G., Watts, C. & Welland, M. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale 6, 10865–10873 (2014).

    Article  CAS  Google Scholar 

  27. Dam, D. H. M. et al. Direct observation of nanoparticle–cancer cell nucleus interactions. ACS Nano 6, 3318–3326 (2012).

    Article  CAS  Google Scholar 

  28. Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

    Article  CAS  Google Scholar 

  29. Bardhan, R., Lal, S., Joshi, A. & Halas, N. Theranostic nanoshells: From probe design to imaging and treatment of cancer. Acc. Chem. Res. 44, 936–946 (2011).

    Article  CAS  Google Scholar 

  30. Cochran, S. A. & Farrell, H. H. The chemisorption of iodine on gold. Surf. Sci. 95, 359–366 (1980).

    Article  CAS  Google Scholar 

  31. Cheng, W., Dong, S. & Wang, E. Iodine-induced gold-nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angew. Chem. Int. Ed. 42, 449–452 (2003).

    Article  CAS  Google Scholar 

  32. Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102, 679–726 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. McVey, A. Gellman, E. Rybak-Akimova, A. Utz and S. Thomas for advice and useful discussions. We thank M. Blecher for his assistance with materials preparation. We are grateful to G. Sirr, C. Rock and H. Bernheim for their oversight of safety protocols during the experiments. The work at Tufts was supported by the National Science Foundation under grants CHE-0844343/CHE-1412402 (A.P., C.J.M. and E.C.H.S.). E.A.L. thanks the Division of Chemical Sciences, Office of Basic Energy Sciences, Condensed Phase and Interfacial Molecular Science Program, US Department of Energy (Grant No. FG02-10ER16170) for support. Some of the research at UCL leading to these results has received financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 616121 (HeteroIce project) and the Royal Society through a Wolfson Research merit Award (A.M.). P.P. and A.M. are grateful for computational resources to the London Centre for Nanotechnology and the UK’s national high performance computing service HECToR (from which access was obtained through the UK’s Material Chemistry Consortium, EP/F067496).

Author information

Authors and Affiliations

Authors

Contributions

E.C.H.S. and A.P. conceived and designed the experiments. A.P., C.J.M. and G.B. fabricated the samples. A.P., C.J.M., E.A.L. and F.R.L. carried out STM, XPS and electron emission experiments. A.P. analysed the experimental data and wrote the paper. A.M. and P.P. conceived, designed and analysed the theoretical computations. P.P. performed the theoretical computations. G.P. and G.B. provided materials, radiation-safe laboratory space and safety oversight. All the authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to E. Charles H. Sykes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronschinske, A., Pedevilla, P., Murphy, C. et al. Enhancement of low-energy electron emission in 2D radioactive films. Nature Mater 14, 904–907 (2015). https://doi.org/10.1038/nmat4323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing