Molecular-based design and emerging applications of nanoporous carbon spheres

Subjects

Abstract

Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic and TEM images of NCS.
Figure 2: Primary methods for synthesizing NCS.
Figure 3: Functionalized NCS.
Figure 4
Figure 5: Application of NCS as an electrode material for supercapacitors and batteries.
Figure 6: Biomedical applications of NCS.

References

  1. 1

    Oh, M. & Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Deshmukh, A. A., Mhlanga, S. D. & Coville, N. J. Carbon spheres. Mater. Sci. Eng. R 70, 1–28 (2010).

    Article  CAS  Google Scholar 

  4. 4

    Nieto-Marquez, A., Romero, R., Romero, A. & Valverde, J. L. Carbon nanospheres: Synthesis, physicochemical properties and applications. J. Mater. Chem. 21, 1664–1672 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Lu, A., Hao, G., Sun, Q., Zhang, X. & Li, W. Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol. Chem. Phys. 213, 1107–1131 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Kim, T. et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 8, 3724–3727 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Fang, Y. et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Commun. 4, 3798 (2013).

    Google Scholar 

  9. 9

    Sun, X. & Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597–601 (2004).

    Article  CAS  Google Scholar 

  10. 10

    Ouyang, Y., Shi, H., Fu, R. & Wu, D. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties. Sci. Rep. 3, 1430 (2013).

    Article  CAS  Google Scholar 

  11. 11

    Wang, S. et al. Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J. Am. Chem. Soc. 133, 15304–15307 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Liu, J. et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Choma, J. et al. New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. J. Mater. Chem. 22, 12636–12642 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Qiao, Z. et al. Controlled synthesis of mesoporous carbon nanostructures via a 'silica-assisted' strategy. Nano Lett. 13, 207–212 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Fuertes, A. B., Valle-Vigon, P. & Sevilla, M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 48, 6124–6126 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Cui, R. et al. Gold nanoparticle–colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 18, 2197–2204 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Ryoo, R., Joo, S. H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Liang, C., Li, Z. & Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Wan, Y., Shi, Y. & Zhao, D. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 20, 932–945 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Wang, Z., Li, F. & Stein, A. Direct synthesis of shaped carbon nanoparticles with ordered cubic mesostructure. Nano Lett. 7, 3223–3226 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Gu, J., Su, S., Li, Y., He, Q. & Shi, J. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem. Commun. 47, 2101–2103 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Schuster, J. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Sun, Z. et al. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano 7, 8706–8714 (2013).

    CAS  Article  Google Scholar 

  25. 25

    White, R. J., Tauer, K., Antonietti, M. & Titirici, M. Functional hollow carbon nanospheres by latex templating. J. Am. Chem. Soc. 132, 17360–17363 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Liu, R. et al. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 50, 6799–6802 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Chen, A. et al. Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J. Mater. Chem. A 1, 1045–1047 (2013).

    Article  Google Scholar 

  28. 28

    Fang, X. et al. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures. Nanoscale 5, 6908–6916 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Zhang, K., Zhao, Q., Tao, Z. & Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6, 38–46 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Li, N. et al. Sol–gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Feng, S. et al. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. Chem. Commun. 50, 329–331 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Valle-Vigon, P., Sevilla, M. & Fuertes, A. B. Synthesis of uniform mesoporous carbon capsules by carbonization of organosilica nanospheres. Chem. Mater. 22, 2526–2533 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Liang, C., Hong, K., Guiochon, G. A., Mays, J. W. & Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Ed. 43, 5785–5789 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Tanaka, S., Nishiyama, N., Egashira, Y. & Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem. Commun. 2125–2127 (2005).

  35. 35

    Meng, Y. et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Gu, D. et al. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites. Adv. Mater. 22, 833–837 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Yan, Y., Zhang, F., Meng, Y., Tu, B. & Zhao, D. One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. Chem. Commun. 2867–2869 (2007).

  38. 38

    Wu, Z. et al. A general 'surface-locking' approach toward fast assembly and processing of large-sized, ordered, mesoporous carbon microspheres. Angew. Chem. Int. Ed. 52, 13764–13768 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Yang, Z. et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chem. Mater. 25, 704–710 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Hu, B. et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010).

    CAS  Article  Google Scholar 

  41. 41

    Shin, Y., Wang, L., Bae, I., Arey, B. W. & Exarhos, G. J. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 112, 14236–14240 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Scholz, S. et al. Cobalt–carbon spheres: Pyrolysis of dicobalthexacarbonyl-functionalized poly(p-phenyleneethynylene)s. Adv. Mater. 17, 1052–1055 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Agrawal, M., Gupta, S. & Stamm, M. Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem. 21, 615–627 (2011).

    CAS  Article  Google Scholar 

  44. 44

    Lu, A., Hao, G. & Sun, Q. Can carbon spheres be created through the Stöber method? Angew. Chem. Int. Ed. 50, 9023–9025 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Zhao, J. et al. A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres. Macromolecules 46, 140–145 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Qian, J. et al. A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chem. Commun. 49, 3043–3045 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Zhou, H. et al. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres. Chem. Commun. 49, 3763–3765 (2013).

    CAS  Article  Google Scholar 

  48. 48

    Friedel, B. & Greulich-Weber, S. Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin. Small 2, 859–863 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Ai, K., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 25, 998–1003 (2013).

    CAS  Article  Google Scholar 

  50. 50

    Yan, J. et al. Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9, 596–603 (2013).

    CAS  Article  Google Scholar 

  51. 51

    Yang, T., Liu, J., Zheng, Y., Monteiro, M. J. & Qiao, S. Z. Facile fabrication of core–shell-structured Ag@carbon and mesoporous yolk–shell-structured Ag@carbon@silica by an extended Stöber method. Chem. Eur. J. 19, 6942–6945 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Guan, B., Wang, X., Xiao, Y., Liu, Y. & Huo, Q. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core–shell nanocomposites. Nanoscale 5, 2469–2475 (2013).

    CAS  Article  Google Scholar 

  53. 53

    You, B., Yang, J., Sun, Y. & Su, Q. Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor. Chem. Commun. 47, 12364–12366 (2011).

    CAS  Article  Google Scholar 

  54. 54

    You, L. et al. Ultrafast hydrothermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave method. Langmuir 28, 10565–10572 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Wang, G. et al. Weak acid–base interaction induced assembly for the synthesis of diverse hollow nanospheres. Chem. Mater. 23, 4537–4542 (2011).

    CAS  Article  Google Scholar 

  56. 56

    Tang, J. et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 54, 588–593 (2015).

    CAS  Google Scholar 

  57. 57

    Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).

    CAS  Article  Google Scholar 

  58. 58

    Wang, L. et al. Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. J. Mater. Chem. A 1, 9422–9426 (2013).

    CAS  Article  Google Scholar 

  59. 59

    Choma, J., Jamiola, D., Augustynek, K., Marszewski, M. & Jaroniec, M. Carbon–gold core–shell structures: Formation of shells consisting of gold nanoparticles. Chem. Commun. 48, 3972–3974 (2012).

    CAS  Article  Google Scholar 

  60. 60

    Zhang, H. et al. Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. J. Mater. Chem. A 1, 12038–12043 (2013).

    CAS  Article  Google Scholar 

  61. 61

    Yang, P. et al. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy. Chem. Eur. J. 18, 9294–9299 (2012).

    CAS  Article  Google Scholar 

  62. 62

    Bian, X. et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 22, 128–132 (2012).

    CAS  Article  Google Scholar 

  63. 63

    Zubizarreta, L., Arenillas, A. & Pis, J. J. Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure. Appl. Surf. Sci. 254, 3993–4000 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Wickramaratne, N. P. & Jaroniec, M. Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles. Chem. Commun. 50, 12341–12343 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Yu, J. C., Hu, X., Li, Q., Zheng, Z. & Xu, Y. Synthesis and characterization of core–shell selenium/carbon colloids and hollow carbon capsules. Chem. Eur. J. 12, 548–552 (2006).

    Article  CAS  Google Scholar 

  66. 66

    Su, F. et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011).

    CAS  Article  Google Scholar 

  67. 67

    Wickramaratne, N. P. et al. Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26, 2820–2828 (2014).

    CAS  Article  Google Scholar 

  68. 68

    Candelaria, S. L., Garcia, B. B., Liu, D. & Cao, G. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22, 9884–9889 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Wickramaratne, N. P. & Jaroniec, M. Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions. Adsorption 20, 287–293 (2013).

    Article  CAS  Google Scholar 

  70. 70

    Wohlgemuth, S., Vilela, F., Titirici, M. & Antonietti, M. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem. 14, 741–749 (2012).

    CAS  Article  Google Scholar 

  71. 71

    Wickramaratne, N. P., Perera, V. S., Ralph, J. M., Huang, S. D. & Jaroniec, M. Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. Langmuir 29, 4032–4038 (2013).

    CAS  Article  Google Scholar 

  72. 72

    Lu, A. et al. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem. Int. Ed. 49, 1615–1618 (2010).

    CAS  Article  Google Scholar 

  73. 73

    Yang, Z. et al. Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application. Sci. Rep. 3, 2925 (2013).

    Article  Google Scholar 

  74. 74

    Lee, J., Kim, S., Yoon, J. & Jang, J. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7, 6047–6055 (2013).

    CAS  Article  Google Scholar 

  75. 75

    Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    CAS  Article  Google Scholar 

  76. 76

    Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    CAS  Article  Google Scholar 

  77. 77

    Zhai, Y. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Zhang, L. L. & Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009).

    CAS  Article  Google Scholar 

  79. 79

    Tang, K. et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2, 873–877 (2012).

    CAS  Article  Google Scholar 

  80. 80

    He, G. et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 7, 10920–10930 (2013).

    CAS  Article  Google Scholar 

  81. 81

    Sun, Y. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Mater. 11, 942–947 (2012).

    CAS  Article  Google Scholar 

  82. 82

    Falco, C. et al. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6, 374–382 (2013).

    CAS  Article  Google Scholar 

  83. 83

    Tanaka, S., Nakao, H., Mukai, T., Katayama, Y. & Miyake, Y. An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure. J. Phys. Chem. C 116, 26791–26799 (2012).

    CAS  Article  Google Scholar 

  84. 84

    Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    CAS  Article  Google Scholar 

  85. 85

    Zheng, G. Y. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Zhou, W. D. et al. Polydopamine-coated, nitrogen-doped, hollow carbon sulfur double-layered core–shell structure for improving lithium sulfur batteries. Nano Lett. 14, 5250–5256 (2014).

    CAS  Article  Google Scholar 

  87. 87

    Li, Z. et al. Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li-S batteries. ACS Nano 8, 9295–9303 (2014).

    CAS  Article  Google Scholar 

  88. 88

    Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).

    CAS  Article  Google Scholar 

  89. 89

    Demir Cakan, R. et al. Hydrothermal carbon spheres containing silicon nanoparticles: Synthesis and lithium storage performance. Chem. Commun. 3759–3761 (2008).

  90. 90

    Zhang, W. et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160–1165 (2008).

    CAS  Article  Google Scholar 

  91. 91

    Zhao, Y., Li, J., Wu, C., Ding, Y. & Guan, L. A yolk–shell Fe3O4@C composite as an anode material for high-rate lithium batteries. ChemPlusChem 77, 748–751 (2012).

    CAS  Article  Google Scholar 

  92. 92

    Su, F. et al. Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem. Mater. 22, 832–839 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Dou, J. & Zeng, H. C. Preparation of Mo-embedded mesoporous carbon microspheres for Friedel–Crafts alkylation. J. Phys. Chem. C 116, 7767–7775 (2012).

    CAS  Article  Google Scholar 

  94. 94

    Xiong, H. F. et al. Fischer–Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J. Catal. 311, 80–87 (2014).

    CAS  Article  Google Scholar 

  95. 95

    Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Commun. 4, 2390 (2013).

    Article  Google Scholar 

  96. 96

    Wickramaratne, N. P. & Jaroniec, M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J. Mater. Chem. A 1, 112–116 (2013).

    CAS  Article  Google Scholar 

  97. 97

    Wickramaratne, N. P. & Jaroniec, M. Activated carbon spheres for CO2 adsorption. ACS Appl. Mater. Interfaces 5, 1849–1855 (2013).

    CAS  Article  Google Scholar 

  98. 98

    Fang, Y. et al. Dual-pore mesoporous carbon@silica composite core–shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. 53, 5366–5370 (2014).

    CAS  Article  Google Scholar 

  99. 99

    Chen, Y. et al. Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv. Mater. 26, 4294–4301 (2014).

    CAS  Article  Google Scholar 

  100. 100

    Wang, J., Hu, Z., Xu, J. & Zhao, Y. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 6, e84 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) Discovery Project program (DP130104459). J.L. gratefully acknowledges Curtin University Pro Vice-Chancellor Awards for Research Excellence.

Author information

Affiliations

Authors

Contributions

J.L. and M.J. designed the initial outline of the Review. All authors discussed the contents, conceived figures and tables, wrote specific sections and proofread the article. M.J. coordinated the writing and integrated each author's contributions.

Corresponding author

Correspondence to Mietek Jaroniec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wickramaratne, N., Qiao, S. et al. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Mater 14, 763–774 (2015). https://doi.org/10.1038/nmat4317

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing